Answer:
![x = (7 + √(85) )/(2) \:\: or \:\: (7 - √(85) )/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/epyppm5pbdi26v0622rdo6c6wvu7ars5a9.png)
Explanation:
__________________________________________________________
FACTS TO KNOW BEFORE SOLVING :-
Quadratic Formula :-
For a quadratic equation ax² + bx + c = 0 , by using quadratic formula the roots of the equation are :-
![x = \frac{-b + {√(b^2 - 4ac) } }{2a} \:\: or \:\: (-b - √(b^2 - 4ac) )/(2a)](https://img.qammunity.org/2022/formulas/mathematics/high-school/t1qxct4jfox5iolkocrwv7pcdr7d6geial.png)
__________________________________________________________
Lets solve the equation x² - 7x - 9 = 0 by quadratic formula.
![=> x = (-(-7) + √((-7)^2 - 4 * 1 * (-9)) )/(2 * 1) \:\: or \:\: (-(-7) - √((-7)^2 - 4 * 1 * (-9)) )/(2 * 1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/i55siibparf9u1bj83zdq5soepdwi1db9b.png)
![=> x = (7 + √(85) )/(2) \:\: or \:\: (7 - √(85) )/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/2nwc9u5ebb2w5iwqzff3b7c58ctuf142lb.png)