74.7k views
21 votes
7.3 Students can solve a system of linear equations using elimination.

2x - y = 13
3x + y = 12

Check Solution:

2 Answers

10 votes

Required solution :

Here we have been given with two equations,

  • 2x - y = 13 (Equation No 1)
  • 3x + y = 12 (Equation No 2)

From the first equation,

2x - y = 13

-y = 13 - 2x

y = 2x - 13

Here we got a temporary value of y as 2x - 13 .

In second equation,

Substitute here the value of y as 2x - 13 inorder to get the value of x.

3x + (2x - 13) = 12

3x + 2x - 13 = 12

5x - 13 = 12

5x = 12 + 13

5x = 25

x = 25 / 5

x = 5

★ Therefore, value of x is 5.

Finding out value of y :

Substitute the value of x in this equation.

y = 2x - 13

y = 2 (5) - 13

y = 2 × 5 - 13

y = 10 - 13

y = -3

★ Therefore, value of y is -3.

User Genshuwoodswind
by
7.6k points
3 votes

Topic : Linear equations in two variables.

Given :

  • 2x - y = 13 ––– (i)
  • 3x + y = 12 ––– (ii)

Solution :

Now,

(i) + (ii)


\qquad \sf \: { \dashrightarrow 2x - y +(3x + y) = 13 + 12}


\qquad \sf \: { \dashrightarrow 2x \: \cancel{- \: y} +3x \: \cancel{+ \: y}= 25}


\qquad \sf \: { \dashrightarrow 2x \: +3x= 25}


\qquad \sf \: { \dashrightarrow 5x= 25}


\qquad \sf \: { \dashrightarrow x \: = (25)/(5) }


\qquad {\pmb{ \bf { \dashrightarrow x \: = 5 }}}

Now, substituting the value of x in Eq (ii) :


\qquad \sf \: { \dashrightarrow 3x + y = 12}


\qquad \sf \: { \dashrightarrow 3(5) + y = 12}


\qquad \sf \: { \dashrightarrow 15 + y = 12}


\qquad \sf \: { \dashrightarrow y = 12 - 15}


\qquad \pmb {\bf { \dashrightarrow y = - 3}}

Therefore, The value of x = 5 and y = -3 .

User Matheus Valenza
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories