80.4k views
23 votes
Problem 7: Use the known Laplace Transforms


L({e}^( λt)sinωt) = \frac{ ω}{(s - {λ)}^(2) + {ω}^(2) }
and

L({e}^( λt)cosωt) = \frac{s - λ}{(s - {λ)}^(2) + {ω}^(2) }
and the result of Exercise 6 to find

L({te}^( λt)cosωt)
and

L({te}^( λt)sinωt)


Problem 7: Use the known Laplace Transforms L({e}^( λt)sinωt) = \frac{ ω}{(s - {λ)}^(2) + {ω}^(2) } and-example-1

1 Answer

8 votes

Let


F(s) = L\left\{e^(\lambda t) \sin(\omega t)\right\} = (\omega)/((s-\lambda)^2 + \omega^2)

By the result of ex. 6,


-F'(s) = L\left\{t e^(\lambda t) \sin(\omega t)\right\} = \boxed{(2\omega (s-\lambda))/(\left((s-\lambda)^2 + \omega^2\right)^2)}

In a similar way, you'll find that


L\left\{t e^(\lambda t) \cos(\omega t)\right\} = \boxed{((s-\lambda)^2 - \omega^2)/(\left((s-\lambda)^2 + \omega^2\right)^2)}

User Ethan Coon
by
3.4k points