149k views
3 votes
What is the resulting integral?

What is the resulting integral?-example-1

1 Answer

6 votes

Answer:


\displaystyle \int {(2)/((1 + √(x))^5)} \, dx = (-(4√(x) + 1))/(3(√(x) + 1)^4) + C

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}
  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Antiderivatives - Integrals

Integration Constant C

U-Substitution

  • U-Solve

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Explanation:

Step 1: Define


\displaystyle \int {(2)/((1 + √(x))^5)} \, dx

Step 2: Identify Variables

Find the variables u-solve using u-substitution.

U-Substitution


\displaystyle u = 1 + √(x)


\displaystyle du = (1)/(2√(x))dx

U-Solve


\displaystyle x = (u - 1)^2


\displaystyle dx = 2√(x)du

Step 3: Integration

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle 2\int {(1)/((1 + √(x))^5)} \, dx
  2. [Integral] U-Solve:
    \displaystyle 2\int {(1)/((1 + √((u - 1)^2))^5)} \, 2√(x)du
  3. [Integral] Simplify:
    \displaystyle 2\int {(2√(x))/(u^5)} \, du
  4. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle 4\int {(√(x))/(u^5)} \, du
  5. [Integral] U-Solve:
    \displaystyle 4\int {(√((u - 1)^2))/(u^5)} \, du
  6. [Integral] Simplify:
    \displaystyle 4\int {(u - 1)/(u^5)} \, du
  7. [Integral] Rewrite [Integration Property - Subtraction]:
    \displaystyle 4[\int {(u)/(u^5)} \, du - \int {(1)/(u^5)} \, du]
  8. [Integrals] Simplify:
    \displaystyle 4[\int {(1)/(u^4)} \, du - \int {(1)/(u^5)} \, du]
  9. [Integrals] Rewrite [Exponential Rule - Rewrite]:
    \displaystyle 4[\int {u^(-4)} \, du - \int {u^(-5)} \, du]
  10. [Integrals] Reverse Power Rule:
    \displaystyle 4[(u^(-3))/(-3) - (u^(-4))/(-4)] + C
  11. Rewrite [Exponential Rule - Rewrite]:
    \displaystyle 4[(-1)/(3u^3) + (1)/(4u^4)] + C
  12. [Brackets] Multiply:
    \displaystyle (-4)/(3u^3) + (4)/(4u^4) + C
  13. Back-Substitute:
    \displaystyle (-4)/(3(1 + √(x))^3) + (4)/(4(1 + √(x))^4) + C
  14. Combine:
    \displaystyle (-(4√(x) + 1))/(3(√(x) + 1)^4) + C

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration

Book: College Calculus 10e

User Phhbr
by
3.8k points