Answer:
(a) See attachment for table
(b)
![Atmost\ 6 = 21.667\%](https://img.qammunity.org/2022/formulas/mathematics/college/meqrx6hycfjjdt6plgtc2o3jenxupkf67h.png)
(c)
![Less\ than\ 6 = 21.667\%](https://img.qammunity.org/2022/formulas/mathematics/college/dbg32o5lzfvzwgu5usq6y5eqzuvvfnk33n.png)
(d)
![At\ least\ 6 = 78.333\%](https://img.qammunity.org/2022/formulas/mathematics/college/d85giunt30cnnifiglu6xe0dqug7elzoc3.png)
Explanation:
Given
The data (in the question)
Solving (a): Frequency and Relative frequencies of each data
The range of the data is 0 to 8. So the frequency of each is the number of times each of 0 - 8 occurs.
This is tabulated below:
![\begin{array}{ccc}x & {Frequency} & {Relative\ Frequency} & {0} & {7} & {11.667\%} &{1}& {13} & {21.667\%} & {2} & {13} & {21.667\%} & {3} & {14} &{23.333\%} & {4} & {5} & {8.333\%} & {5} &{3} &{5.000\%} &{6} &{2} & {3.333\%} & {7} & {2} & {3.333\%} & {8} & {1} & {1.667\%} \ \end{array}](https://img.qammunity.org/2022/formulas/mathematics/college/jfz31jqkcorur1eaz8f52gawia4mxwl7h1.png)
![Total\ \ \ 60](https://img.qammunity.org/2022/formulas/mathematics/college/cvqbmblqsjt8af2zn2v6ntk0ywe0wvltue.png)
The relative frequency is calculated as:
![Relative\ Frequency = (Frequency)/(Total\ Frequency) * 100\%](https://img.qammunity.org/2022/formulas/mathematics/college/qyn0uo767ni15loxhizul64amandztwi5b.png)
For instance: When x = 0:
![Relative\ Frequency = (7)/(60) * 100\%](https://img.qammunity.org/2022/formulas/mathematics/college/qkr87d8bx1vaw8tlilfpetk1su86dq58xr.png)
![Relative\ Frequency = (700)/(60) * \%](https://img.qammunity.org/2022/formulas/mathematics/college/wrw2vr390o2x2ik2yknnuyubbbd6agdtwj.png)
![Relative\ Frequency = 11.667 \%](https://img.qammunity.org/2022/formulas/mathematics/college/84yzzguk8rgdkjy3f2r5xprzfi0y820jyp.png)
Solving (b): Proportion that have at most 6.
Here, we consider frequencies of 0 to 6.
This is represented as thus:
![\begin{array}{ccc}x & {Frequency} & {Relative\ Frequency} & {4} & {5} & {8.333\%} & {5} &{3} &{5.000\%} &{6} &{2} & {3.333\%} & {7} & {2} & {3.333\%} & {8} & {1} & {1.667\%} \ \end{array}](https://img.qammunity.org/2022/formulas/mathematics/college/vjc9j4r2n0zx6a5fd5qsg8b01kq6ehl3si.png)
Add up the relative frequencies to get the proportion
![Atmost\ 6 = 8.333\% + 5.000\% + 3.333\% + 3.333\% + 1.667\%](https://img.qammunity.org/2022/formulas/mathematics/college/b4qlfsdccba51eg1jbr77fk8a0tvmmjisg.png)
![Atmost\ 6 = 21.667\%](https://img.qammunity.org/2022/formulas/mathematics/college/meqrx6hycfjjdt6plgtc2o3jenxupkf67h.png)
Solving (c): Proportion that have at fewer than 6.
Here, we consider frequencies of 0 to 5.
This is represented as thus:
![\begin{array}{ccc}x & {Frequency} & {Relative\ Frequency} & {4} & {5} & {8.333\%} & {5} &{3} &{5.000\%} &{6} &{2} & {3.333\%} & {7} & {2} & {3.333\%} & {8} & {1} & {1.667\%} \ \end{array}](https://img.qammunity.org/2022/formulas/mathematics/college/vjc9j4r2n0zx6a5fd5qsg8b01kq6ehl3si.png)
Add up the relative frequencies to get the proportion
![Less\ than\ 6 = 8.333\% + 5.000\% + 3.333\% + 3.333\% + 1.667\%](https://img.qammunity.org/2022/formulas/mathematics/college/5c47ggin8l6r3awhgcsk4daan4mpg662iv.png)
![Less\ than\ 6 = 21.667\%](https://img.qammunity.org/2022/formulas/mathematics/college/dbg32o5lzfvzwgu5usq6y5eqzuvvfnk33n.png)
Solving (d): Proportion that have at least 6.
Here, we make use of the complement rule:
![At\ least\ 6 = 100\% - Less\ than\ 6](https://img.qammunity.org/2022/formulas/mathematics/college/uiewhr14o4sxyx61916g94jl2hjr6f6nj7.png)
![At\ least\ 6 = 100\% - 21.667\%](https://img.qammunity.org/2022/formulas/mathematics/college/p05kmp2wof6ajbgn66za112kqplzjmq146.png)
![At\ least\ 6 = 78.333\%](https://img.qammunity.org/2022/formulas/mathematics/college/d85giunt30cnnifiglu6xe0dqug7elzoc3.png)