Answer:
11. CK = 66
12. QS = 72
13. CE = 11
14. LJ = 60
Explanation:
Recall: the corresponding side lengths of similar triangles are proportional and the ratio of their side lengths are equal.
11. AB/KL = AC/KC
77/42 = 121/CK (Substitution)
Cross multiply
77*CK = 121*42
77*CK = 5082
CK = 5082/77
CK = 66
12. QR/BQ = QS/CQ
72/32 = (32 + CS)/32 (Substitution)
Cross multiply
32(32 + CS) = 72*32
1024 + 32*CS = 2304
32*CS = 2304 - 1024
32*CS = 1280
CS = 1280/32
CS = 40
QS = 32 + CS = 32 + 40 = 72
13. QS/CE = QR/CD
33/CE = 36/12
33/CE = 3
Cross multiply
3*CE = 33
Divide both sides by 3
CE = 33/3
CE = 11
14. LJ/LU = LK/LV
LJ/10 = 60/10
LJ/10 = 6
LJ = 6*10
LJ = 60