Answer:
E(X) = 38.9346
Var(X) = 25.588
E(Y) = 38.25
Var(Y) = 26.1875
Explanation:
Given - Four buses carrying 153 high school students arrive to Montreal. The buses carry, respectively, 36, 46, 32, and 39 students. One of the students is randomly selected.One of the 4 bus drivers is also randomly selected.
To find - Compute the expectations and variances of X and Y.
Proof -
Let us assume that,
X be The number of students that were on the bus carrying this randomly selected student.
Y denote the number of students on his bus.
Now,
E(X) =
![(36(36) + 46(46) + 32(32) + 39(39))/(153)](https://img.qammunity.org/2022/formulas/mathematics/college/3jk5qz4r8y7away7jfoyqtughyz4zyo76i.png)
=
![(5957)/(153)](https://img.qammunity.org/2022/formulas/mathematics/college/ruwfvyoglejw8os4p8570yj4p4raleldvh.png)
= 38.9346
⇒E(X) = 38.9346
Now,
E(Y) =
![(36 + 46 + 32 + 39)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/po1cpjkplea7jv797g46nz48h2dz5udvx8.png)
=
![(153)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/qj5m626zqr5s6tublk23n24c0l8sf01bud.png)
= 38.25
⇒E(Y) = 38.25
Now,
Var(X) =
![(36(36 - 38.9346)^(2) + 46(46 - 38.9346)^(2) + 32(32 - 38.9346)^(2) + 39(39 - 38.9346)^(2))/(153)](https://img.qammunity.org/2022/formulas/mathematics/college/2tpbg62bp2g0hbfwaky0mmhq78zivcdyzt.png)
=
![(310.0276 + 2296.3144 + 1308.5091 + 0.1668)/(153)](https://img.qammunity.org/2022/formulas/mathematics/college/oeusnf0xjf5wq508xg5s9o89ky5dzpp1t7.png)
=
![(3915.0179)/(153)](https://img.qammunity.org/2022/formulas/mathematics/college/o0yhnymmee3k7hlct1mf07jfvgp9cezlg9.png)
= 25.588
⇒Var(X) = 25.588
Now,
Var(Y) = E(Y²) - [E(Y)]²
=
![(36^(2) + 46^(2) + 32^(2) + 39^(2) )/(4) - (38.25)^(2)](https://img.qammunity.org/2022/formulas/mathematics/college/cngomqg3hqjg9ky1rs5fubti4hcnckos5v.png)
=
![(5957)/(4) - 1463.0625](https://img.qammunity.org/2022/formulas/mathematics/college/8w4521geatattsmahk8g0d2ni173zfis8f.png)
= 1489.25 - 1463.0625
= 26.1875
⇒Var(Y) = 26.1875