Answer:
![\displaystyle (dy)/(dx) \bigg| \limit_((1, 4)) = 2](https://img.qammunity.org/2022/formulas/mathematics/college/epirptd0cpmtx84pk69cf2e8mmeib370mq.png)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Coordinates (x, y)
- Exponential Rule [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{(1)/(n)}](https://img.qammunity.org/2022/formulas/mathematics/college/yqpyvbuov0tgbjo8vla0qsqp67pafn2fr7.png)
- Exponential Rule [Rewrite]:
![\displaystyle b^(-m) = (1)/(b^m)](https://img.qammunity.org/2022/formulas/mathematics/high-school/u1reolge2a6odf3mp4zy8kkmymeathpr44.png)
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Implicit Differentiation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Explanation:
Step 1: Define
![\displaystyle √(x) - √(y) = -1](https://img.qammunity.org/2022/formulas/mathematics/college/eihqsn7vqdt75ztibg28lcnlw4su5t752h.png)
Point (1, 4)
Step 2: Differentiate
- [Function] Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle x^{(1)/(2)} - y^{(1)/(2)} = -1](https://img.qammunity.org/2022/formulas/mathematics/college/nm87fjzlj6l7biqcuhqxn9goez3b9b2tkp.png)
- [Implicit Differentiation] Basic Power Rule:
![\displaystyle (1)/(2)x^{(1)/(2) - 1} - (1)/(2)y^{(1)/(2) - 1}(dy)/(dx) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/5kdabmhdioqj6rzxg7ewa0eqjq0v3x44xy.png)
- [Implicit Differentiation] Simplify Exponents:
![\displaystyle (1)/(2)x^{(-1)/(2)} - (1)/(2)y^{(-1)/(2)}(dy)/(dx) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/w7xvzlk5h9r3gt768qx3vr1ey8dqtsfvbx.png)
- [Implicit Differentiation] Rewrite [Exponential Rule - Rewrite]:
![\displaystyle \frac{1}{2x^{(1)/(2)}} - \frac{1}{2y^{(1)/(2)}}(dy)/(dx) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/8vbze3ueg9ubo9ri8ew8rgpz2ntnv37vv5.png)
- [Implicit Differentiation] Isolate y terms:
![\displaystyle -\frac{1}{2y^{(1)/(2)}}(dy)/(dx) = -\frac{1}{2x^{(1)/(2)}}](https://img.qammunity.org/2022/formulas/mathematics/college/z4kqz2wp0i724n4hph5ru1qprh2ig1o6hu.png)
- [Implicit Differentiation] Isolate
:
![\displaystyle (dy)/(dx) = \frac{2y^{(1)/(2)}}{2x^{(1)/(2)}}](https://img.qammunity.org/2022/formulas/mathematics/college/23wzosjopwj53lniffni4hkkh24qcw61e4.png)
- [Implicit Differentiation] Simplify:
![\displaystyle (dy)/(dx) = \frac{y^{(1)/(2)}}{x^{(1)/(2)}}](https://img.qammunity.org/2022/formulas/mathematics/college/80ug64n44afc8il4ssqnpjr4eg52hc8rrt.png)
Step 3: Evaluate
- Substitute in point [Derivative]:
![\displaystyle (dy)/(dx) = \frac{(4)^{(1)/(2)}}{(1)^{(1)/(2)}}](https://img.qammunity.org/2022/formulas/mathematics/college/d1beop7g0s3yjfw6trygdq88kgc5rpmob1.png)
- Exponents:
![\displaystyle (dy)/(dx) = (2)/(1)](https://img.qammunity.org/2022/formulas/mathematics/college/jkgftz8eckny77x2box5dlj1z76qpeavts.png)
- Division:
![\displaystyle (dy)/(dx) = 2](https://img.qammunity.org/2022/formulas/mathematics/college/wh88w13s79kv8l0ta4y03zo60rh1gvkles.png)
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Implicit Differentiation
Book: College Calculus 10e