Answer:
The area of the triangle is 18 square units.
Explanation:
First, we determine the lengths of segments AB, BC and AC by Pythagorean Theorem:
AB
![AB = \sqrt{(5-2)^(2)+[6-(-1)]^(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/jdjq42l4u3almgmo603ja8xfj8v54xzurx.png)
![AB \approx 7.616](https://img.qammunity.org/2022/formulas/mathematics/high-school/x6xfe9paz375xhxbsgep0l5ui7c09wpff9.png)
BC
![BC = \sqrt{(-1-5)^(2)+(4-6)^(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/kno9hqaql2txeybbr47j0wjqc76dn2zvox.png)
![BC \approx 6.325](https://img.qammunity.org/2022/formulas/mathematics/high-school/1xp37zc0p2auegeltxredfocgzcfid8vod.png)
AC
![AC = \sqrt{(-1-2)^(2)+[4-(-1)]^(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/z5w8mm8mv9lnmmzoidown9433wshbdiuxq.png)
![AC \approx 5.831](https://img.qammunity.org/2022/formulas/mathematics/high-school/5pct26zwe6225ub1onc94qnagfjn1q4u1r.png)
Now we determine the area of the triangle by Heron's formula:
(1)
(2)
Where:
- Area of the triangle.
- Semiparameter.
If we know that
,
and
, then the area of the triangle is:
![s \approx 9.886](https://img.qammunity.org/2022/formulas/mathematics/high-school/px90b13t18deykii0oc8d9p58gv7ltohz2.png)
![A = 18](https://img.qammunity.org/2022/formulas/mathematics/college/nky8voijf9515p659mnicy2tp0p2q7dezu.png)
The area of the triangle is 18 square units.