67.1k views
4 votes
Write the complex number in trigonometric form.
z = 5 - 5i

1 Answer

4 votes

Answer:


\large \boxed{ \boxed{ \red{ \ \rm 5 √(2) ( \cos( (7\pi)/(4) ) + i \sin( (7\pi)/(4) ) )}}}

Explanation:

to understand this

you need to know about:

  • imaginary number
  • PEMDAS

tips and formulas:


  • \sf \: formula \: of \: trigonometric \: form : \\ \rm r( \cos( \theta) + i \sin( \theta) )

  • \rm \: r = \sqrt{ {a}^(2) + {b}^(2) }

  • \rm \theta = \arctan( (b)/(a) )

given:

  • z=5-5i

let's solve:

complex number:a+bi

therefore

  • our a is 5
  • our b is -5


\sf sustitute \: the \: value \: of \: a \: and \: b \: into \: the \: modulus :


\rm \: r = \sqrt{ {5}^(2) + ( { - 5)}^(2) }


\sf simplify \: squres :


\rm \: r = √(25 + 25)


\sf simplify \: addition :


\rm \: r = √(50)


\sf rewrite \: 50 \: as \: 2 * 25


\sf r = √(2 * 25)


\sf use \: √(ab) \iff \: √(a ) √(b) :


\rm r = √(25) √(2)


\therefore \rm \: r = 5 √(2)


\sf sustitute \: the \: value \: of \: a \: and \: b \: into \: the \: agrument :


\rm \theta = \arctan(( - 5)/(5) )


\sf simplify \: divition :


\rm \theta = \arctan( - 1)


\theta = - (\pi)/(4)


\sf add \: 2\pi \: to \: get \: a \: positive \: agrument


\rm \theta = - (\pi)/(4) + 2\pi \\ \rm\therefore \: \theta = (7\pi)/(4)


\sf \: sustitute \: the \: value \: of \: \rm \: r \: and \: \theta : \\ \rm 5 √(2) ( \cos( (7\pi)/(4) ) + i \sin( (7\pi)/(4) ) )


\text{And we are done!}

User Koo SengSeng
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories