180k views
5 votes
Find y' if y= In (x2 +6)^3/2
y'=

Find y' if y= In (x2 +6)^3/2 y'=-example-1

1 Answer

3 votes

Answer:


\displaystyle y' = \frac{3xln(x^2 + 6)^{(1)/(2)}}{x^2 + 6}

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Factoring

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

ln Derivative:
\displaystyle (d)/(dx) [lnu] = (u')/(u)

Explanation:

Step 1: Define


\displaystyle y = ln(x^2 + 6)^{(3)/(2)}

Step 2: Differentiate

  1. [Derivative] Chain Rule:
    \displaystyle y' = (d)/(dx)[ln(x^2 + 6)^{(3)/(2)}] \cdot (d)/(dx)[ln(x^2 + 6)] \cdot (d)/(dx)[x^2 + 6]
  2. [Derivative] Chain Rule [Basic Power Rule]:
    \displaystyle y' = (3)/(2)ln(x^2 + 6)^{(3)/(2) - 1} \cdot (d)/(dx)[ln(x^2 + 6)] \cdot (d)/(dx)[x^2 + 6]
  3. [Derivative] Simplify:
    \displaystyle y' = (3)/(2)ln(x^2 + 6)^{(1)/(2)} \cdot (d)/(dx)[ln(x^2 + 6)] \cdot (d)/(dx)[x^2 + 6]
  4. [Derivative] ln Derivative:
    \displaystyle y' = (3)/(2)ln(x^2 + 6)^{(1)/(2)} \cdot (1)/(x^2 + 6) \cdot (d)/(dx)[x^2 + 6]
  5. [Derivative] Basic Power Rule:
    \displaystyle y' = (3)/(2)ln(x^2 + 6)^{(1)/(2)} \cdot (1)/(x^2 + 6) \cdot (2 \cdot x^(2 - 1) + 0)
  6. [Derivative] Simplify:
    \displaystyle y' = (3)/(2)ln(x^2 + 6)^{(1)/(2)} \cdot (1)/(x^2 + 6) \cdot (2x)
  7. [Derivative] Multiply:
    \displaystyle y' = \frac{3ln(x^2 + 6)^{(1)/(2)}}{2} \cdot (1)/(x^2 + 6) \cdot (2x)
  8. [Derivative] Multiply:
    \displaystyle y' = \frac{3ln(x^2 + 6)^{(1)/(2)}}{2(x^2 + 6)} \cdot (2x)
  9. [Derivative] Multiply:
    \displaystyle y' = \frac{3(2x)ln(x^2 + 6)^{(1)/(2)}}{2(x^2 + 6)}
  10. [Derivative] Multiply:
    \displaystyle y' = \frac{6xln(x^2 + 6)^{(1)/(2)}}{2(x^2 + 6)}
  11. [Derivative] Factor:
    \displaystyle y' = \frac{2(3x)ln(x^2 + 6)^{(1)/(2)}}{2(x^2 + 6)}
  12. [Derivative] Simplify:
    \displaystyle y' = \frac{3xln(x^2 + 6)^{(1)/(2)}}{x^2 + 6}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

User Fjarlq
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories