Answer:
See below
Explanation:
to understand this
you need to know about:
- law of sine
- law of cosine
- PEMDAS
let's solve:
there are 3 ways to solve SAS triangle
- use The Law of Cosines to calculate the unknown side,
- then use The Law of Sines to find the smaller of the other two angles
- and then use the three angles add to 180° to find the last angle.
first figure out
![\angle C](https://img.qammunity.org/2022/formulas/mathematics/high-school/4j6sf4mbawg20fagspdf3hitc2b7ofidrf.png)
to do so we will use the formula of law of cosine of C angle
![{c}^(2) = {a}^(2) + {b}^(2) - 2ab.\cos(C)](https://img.qammunity.org/2022/formulas/mathematics/high-school/abwyl6ewai3t6l9kh9z4jk3v9iyupxzeu8.png)
substitute the given values of a,b and
![\angle C](https://img.qammunity.org/2022/formulas/mathematics/high-school/4j6sf4mbawg20fagspdf3hitc2b7ofidrf.png)
![\sf{c}^(2) = {6 }^(2) + {3.5}^(2) - 2.6.(3.5). \cos( {25.7}^( \circ) )](https://img.qammunity.org/2022/formulas/mathematics/high-school/zvc63dfs1toziav0rvxgemymddhuza1r66.png)
simplify squares:
![c^(2)=36+12.25-42.\cos(25.7^(\circ))](https://img.qammunity.org/2022/formulas/mathematics/high-school/3lgpjwbckvufufllsgtwuemz108cfk84gc.png)
simplify addition:
![c^(2)=48.25-42.\cos(25.7^(\circ))](https://img.qammunity.org/2022/formulas/mathematics/high-school/hns3de9otcfi6an87n8o0kmq5huynmq6ep.png)
square root both sides
![\sf \: \sqrt{ {c}^(2) } = \sqrt{ 48.25-42. \cos(25.7^(\circ))}](https://img.qammunity.org/2022/formulas/mathematics/high-school/m3p49efbkjd8mxmoto3dhk0y95fuhalflz.png)
simplify:
therefore
![\bold{c=3.23}](https://img.qammunity.org/2022/formulas/mathematics/high-school/tcv9c1rfpv0herhxrhm9xh68y7mopdcd8s.png)
use law of sine to figure out angle A
![(6)/(\sin( \angle \: A) ) = (3.23)/(\sin(25.7))](https://img.qammunity.org/2022/formulas/mathematics/high-school/dgxp5y23dfzp5f3nvd4bq740ezm3k49vqh.png)
therefore
(use calculater to simplify it)
therefore
![\angle B\: is\: 180^(o)-25.70^(o)-53.66^(o)](https://img.qammunity.org/2022/formulas/mathematics/high-school/gnhj1pmjgww9b9ch98vuir46n8ng8izwiv.png)
![\bold{= 100.64}](https://img.qammunity.org/2022/formulas/mathematics/high-school/mrtbo4drk2cwvvaqi1yndrbcnni42auvub.png)