Answer:
D (-6, -5)
Explanation:
We need to create a linear function for the set of coordinates, input the x-values of the possible options into the function, then see which one gives the correct y-value.
Pick 2 coordinate pairs from the set:
Let
= (0, 4)
Let
= (-2, 1)
Use slope formula:
![m=(y_2-y_1)/(x_2-x_1)=(1-4)/(-2-0)=\frac32](https://img.qammunity.org/2023/formulas/mathematics/high-school/55xvgjfapvvz74q92x850oox5fowidotpp.png)
Use equation of a line in point-slope form to create the linear function:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
![\implies y-4=\frac32(x-0)](https://img.qammunity.org/2023/formulas/mathematics/high-school/y3l0oz664o1kria1zz8a16aah2oko59r5w.png)
![\implies y=\frac32x+4](https://img.qammunity.org/2023/formulas/mathematics/high-school/mozm9emjvddvnngm92qfa6a3kzr2tnr0c5.png)
Therefore, the linear function is
![f(x)=\frac32x+4](https://img.qammunity.org/2023/formulas/mathematics/high-school/ditbyhvq69odepv2wllzlgre04he8gkj0o.png)
Inputting the x-values of the possible options, (-6, -5) is the only coordinate pair that is correct:
![f(-6)=\frac32(-6)+4=-5](https://img.qammunity.org/2023/formulas/mathematics/high-school/bpo38f731ehdj46w1s3ht69v6az5q646hd.png)