Examining the question:
We are given the expression:
![(1)/(Sec(\alpha)-Tan(\alpha))](https://img.qammunity.org/2022/formulas/mathematics/college/3hpogn0yhcau8jp1aw093tncnbe3i8w56e.png)
We know from Basic trigonometry that:
![Sec(\alpha) = (1)/(Cos(\alpha))](https://img.qammunity.org/2022/formulas/mathematics/college/w46xwrg6bfkd6hls7ih9z0pozjlr32fb35.png)
![Tan(\alpha) = (Sin(\alpha))/(Cos(\alpha))](https://img.qammunity.org/2022/formulas/mathematics/college/zn0huqo04t8pvzyo5xdkdf4ecvr7tmlrev.png)
Simplifying the expression:
Replacing these values in the given expression, we get:
![(1)/((1)/(Cos(\alpha)) -(Sin(\alpha))/(Cos(\alpha)) )](https://img.qammunity.org/2022/formulas/mathematics/college/4qbdchvhpnh63erik1ltp9xjkcmqpuzcrt.png)
Since the denominator of both the values in the denominator is the same:
![(1)/((1-Sin(\alpha))/(Cos(\alpha)) )](https://img.qammunity.org/2022/formulas/mathematics/college/hvokrche6wx70fvt5oyx9z4eiwc2glyhti.png)
We know that
=
, using the same property:
![(Cos(\alpha))/(1-Sin(\alpha))](https://img.qammunity.org/2022/formulas/mathematics/college/5eyogb5cx2n0v5zq3jhfjifaj4sagsqbrp.png)
and we are done!