233k views
2 votes
Lol please help i literally cannot do math to save my life

Lol please help i literally cannot do math to save my life-example-1
User Umopepisdn
by
3.3k points

2 Answers

5 votes

Answer:

3.6 units

Explanation:

Point A -->
x_(1) \\ = -2 ,
y_(1) = 1

Point B -->
x_(2) = 1 ,
y_(2) = -1

AB =


\sqrt{(x_(2) - x_(1))^2 + (y_(2) - y_(1))^2 } \\√([1 - (-2)]^2 + [(-1) - 1]^2) \\√(3^2 + (-2)^2) \\√(9 + 4) \\ √(13) \\3.605

distance between AB can be rounded to 3.6 units

Hope it helps.

User Huu Phuong Vu
by
3.6k points
2 votes

Answer:


\displaystyle d \approx 3.6

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

Reading a Cartesian Plane

  • Coordinates (x, y)

Algebra II

  • Distance Formula:
    \displaystyle d = √((x_2-x_1)^2+(y_2-y_1)^2)

Explanation:

Step 1: Define

Find points from graph.

Point A(-2, 1)

Point B(1, -1)

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:
    \displaystyle d = √((1+2)^2+(-1-1)^2)
  2. [Distance] [√Radical] (Parenthesis) Add/Subtract:
    \displaystyle d = √((3)^2+(-2)^2)
  3. [Distance] [√Radical] Evaluate exponents:
    \displaystyle d = √(9+4)
  4. [Distance] [√Radical] Add:
    \displaystyle d = √(13)
  5. [Distance] [√Radical] Evaluate:
    \displaystyle d = 3.60555127546
  6. [Distance] Round:
    \displaystyle d \approx 3.6
User Sioux
by
3.6k points