101k views
0 votes
Simplify the radical expression.

2√10 . 3√12


A.12√60
B.5√120
C.12√30
D.6√120


Simplify the radical expression.

√14q . 2√4q

A.3√56q
B.4q√14
C.2√56q^2
D.4√14q^2



Simplify the radical expression by rationalizing the denominator.


4/√11

A.11√4
B.4√11
C.4√11/11
D.√121/11

User Drlemon
by
4.4k points

1 Answer

4 votes

Answer:

1) D.
6√(120), 2) C.
2√(56)q^(2), 3) C.
(4√(11))/(11)

Explanation:

1) We proceed to simplify the expression given in statement:

(i)
2√(10)\cdot 3√(12) Given

(ii)
(3\cdot 2)\cdot (√(10)\cdot √(12)) Commutative and associative properties

(iii)
(3\cdot 2)\cdot (10^(0.5)\cdot 12^(0.5)) Definition of square root.

(iv)
6\cdot (10\cdot 12)^(0.5) Definition of multiplication/
a^(c)\cdot b^(c) = (a\cdot b)^(c)

(v)
6√(120) Definition of multiplication/Definition of square root/Result

Answer: D

2) We proceed to simplify the expression given in statement:

(i)
√(14)q \cdot 2√(4)q Given

(ii)
2\cdot (√(14)\cdot √(4))\cdot (q\cdot q) Commutative and associative properties

(iii)
2\cdot (14^(0.5)\cdot 4^(0.5))\cdot q^(2) Definition of square root/Definition of power.

(iv)
2\cdot (14\cdot 4)^(0.5)\cdot q^(2)
a^(c)\cdot b^(c) = (a\cdot b)^(c)

(v)
2√(56)q^(2) Definition of multiplication/Definition of square root/Result

Answer: C

3) We proceed to simplify the expression given in statement:

(i)
(4)/(√(11)) Given

(ii)
(4)/(√(11))\cdot (√(11))/(√(11)) Modulative property/Existence of multiplicative inverse.

(iii)
(4√(11))/(√(11)\cdot √(11))
(a)/(b)* (c)/(d) = (a\cdot c)/(b\cdot d)

(iv)
(4√(11))/(11^(0.5)\cdot 11^(0.5)) Definition of square root.

(v)
(4√(11))/(11)
a^m\cdot a^(n) = a^(m+n)/Result

Answer: C

User CrBruno
by
4.0k points