65.2k views
0 votes
Please someone help me with the question

Please someone help me with the question-example-1

1 Answer

5 votes

Answer:


\displaystyle (d)/(dx)[e^(2x)] = 2e^(2x)


\displaystyle (d)/(dx)[e^(3x)] = 3e^(3x)

General Formulas and Concepts:

Algebra I

  • Terms/Coefficients
  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)

Calculus

Derivatives

Derivative Notation

eˣ Derivative:
\displaystyle (d)/(dx)[e^x] = e^x

Derivative Rule [Product Rule]:
\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Explanation:

Step 1: Define


\displaystyle (d)/(dx)[e^(2x)] = (d)/(dx)[e^x \cdot e^x]


\displaystyle (d)/(dx)[e^(3x)] = (d)/(dx)[e^x \cdot e^(2x)]

Step 2: Differentiate


\displaystyle (d)/(dx)[e^(2x)]

  1. [Derivative] Product Rule:
    \displaystyle (d)/(dx)[e^(2x)] = (d)/(dx)[e^x]e^x + e^x(d)/(dx)[e^x]
  2. [Derivative] eˣ Derivative:
    \displaystyle (d)/(dx)[e^(2x)] = e^x \cdot e^x + e^x \cdot e^x
  3. [Derivative] Multiply [Exponential Rule - Multiplying]:
    \displaystyle (d)/(dx)[e^(2x)] = e^(2x) + e^(2x)
  4. [Derivative] Combine like terms [Addition]:
    \displaystyle (d)/(dx)[e^(2x)] = 2e^(2x)


\displaystyle (d)/(dx)[e^(3x)]

  1. [Derivative] Product Rule:
    \displaystyle (d)/(dx)[e^(3x)] = (d)/(dx)[e^x]e^(2x) + e^x(d)/(dx)[e^(2x)]
  2. [Derivative] eˣ Derivatives:
    \displaystyle (d)/(dx)[e^(3x)] = e^x(e^(2x)) + e^x(2e^(2x))
  3. [Derivative] Multiply [Exponential Rule - Multiplying]:
    \displaystyle (d)/(dx)[e^(3x)] = e^(3x) + 2e^(3x)
  4. [Derivative] Combine like terms [Addition]:
    \displaystyle (d)/(dx)[e^(3x)] = 3e^(3x)

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

User Shavera
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories