65.2k views
0 votes
Please someone help me with the question

Please someone help me with the question-example-1

1 Answer

5 votes

Answer:


\displaystyle (d)/(dx)[e^(2x)] = 2e^(2x)


\displaystyle (d)/(dx)[e^(3x)] = 3e^(3x)

General Formulas and Concepts:

Algebra I

  • Terms/Coefficients
  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)

Calculus

Derivatives

Derivative Notation

eˣ Derivative:
\displaystyle (d)/(dx)[e^x] = e^x

Derivative Rule [Product Rule]:
\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Explanation:

Step 1: Define


\displaystyle (d)/(dx)[e^(2x)] = (d)/(dx)[e^x \cdot e^x]


\displaystyle (d)/(dx)[e^(3x)] = (d)/(dx)[e^x \cdot e^(2x)]

Step 2: Differentiate


\displaystyle (d)/(dx)[e^(2x)]

  1. [Derivative] Product Rule:
    \displaystyle (d)/(dx)[e^(2x)] = (d)/(dx)[e^x]e^x + e^x(d)/(dx)[e^x]
  2. [Derivative] eˣ Derivative:
    \displaystyle (d)/(dx)[e^(2x)] = e^x \cdot e^x + e^x \cdot e^x
  3. [Derivative] Multiply [Exponential Rule - Multiplying]:
    \displaystyle (d)/(dx)[e^(2x)] = e^(2x) + e^(2x)
  4. [Derivative] Combine like terms [Addition]:
    \displaystyle (d)/(dx)[e^(2x)] = 2e^(2x)


\displaystyle (d)/(dx)[e^(3x)]

  1. [Derivative] Product Rule:
    \displaystyle (d)/(dx)[e^(3x)] = (d)/(dx)[e^x]e^(2x) + e^x(d)/(dx)[e^(2x)]
  2. [Derivative] eˣ Derivatives:
    \displaystyle (d)/(dx)[e^(3x)] = e^x(e^(2x)) + e^x(2e^(2x))
  3. [Derivative] Multiply [Exponential Rule - Multiplying]:
    \displaystyle (d)/(dx)[e^(3x)] = e^(3x) + 2e^(3x)
  4. [Derivative] Combine like terms [Addition]:
    \displaystyle (d)/(dx)[e^(3x)] = 3e^(3x)

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

User Shavera
by
4.8k points