Answer:
![\boxed {\boxed {\sf (\frac {7}{2}, (3)/(2)) \ or \ (3,5, 1.5) }}](https://img.qammunity.org/2022/formulas/mathematics/college/6gwvnebijrkhz4ptb6ltduijhu91q1ffk4.png)
Explanation:
The midpoint is essentially a point with the average of the 2 x-coordinates and the 2 y-coordinates.
The formula is:
![(\frac {x_1+x_2}{2}, (y_1+y_2)/(2))](https://img.qammunity.org/2022/formulas/mathematics/college/ijtg1mzfnj209d5pbi6m47xx3fcbb6z5pz.png)
We are given two points: A (7,0) and B (0, 3). Remember points are written as (x, y).
Therefore,
![x_1= 7 \\y_1=0 \\x_2=0 \\x_2=3](https://img.qammunity.org/2022/formulas/mathematics/college/s22v8l2a5jte9h9tvp7l5rln70xsq7a3ic.png)
Substitute the values into the formula.
![(\frac {7+0}{2}, (0+3)/(2))](https://img.qammunity.org/2022/formulas/mathematics/college/rwt23i9zqkbu5pjb1vphz88l99dolao2to.png)
Solve the numerators first.
![(\frac {7}{2}, (3)/(2))](https://img.qammunity.org/2022/formulas/mathematics/college/zs6zti7c8obo622dzgeqty14jqgoy83hn1.png)
The midpoint can be left like this because the fractions are reduced, but it can be written as decimals too.
![(3.5, 1.5)](https://img.qammunity.org/2022/formulas/mathematics/college/nmn2z2urotix3tx8xvq1tuz48wveoz063c.png)