16.5k views
2 votes
Let f(x) = e ^ (6x) and g(x) = 8in(x) Find and simplify g(f(- 2)) -96 -48 48 C B A

User Jon Rimmer
by
8.4k points

2 Answers

5 votes

Answer: g(f(-2))=-96

Explanation:


Given: \ f(x)=e^(6x)\ \ \ \ g(x)=8ln(x)\ \ \ \ g(f(-2))=?\\\\f(-2)=e^(6*(-2))\\\\f(-2)=e^(-12)\\\\Hence,\\\\g(f(-2))=8ln(e^(-12))\\\\g(f(-2))=8*(-12)\\\\g(f(-2))=-96

User Adad Dayos
by
8.2k points
3 votes

Answer:

-96

Explanation:

Given:


\begin{cases}f(x)=e^(6x)\\ g(x)=8 \ln (x) \end{cases}

To find g[f(-2)], substitute x = -2 into the function f(x):


\implies f(-2)=e^(6 * -2)=e^(-12)

Then substitute the function f(-2) in place of the x in function g(x):


\implies g[f(-2)]=8 \ln \left(e^(-12)\right)


\textsf{Apply the power law}: \quad \ln x^n=n \ln x


\begin{aligned}\implies g[f(-2)]&=-12\cdot 8 \ln \left(e\right)\\&=-96 \ln \left(e\right)\end{aligned}

Apply the log law: ln(e) = 1


\begin{aligned}\implies g[f(-2)]&=-96 \ln \left(e\right)\\&=-96(1)\\&=-96\end{aligned}

---------------------------------------------------------------------

As one calculation:


\begin{aligned}g[f(-2)]&=8 \ln \left(e^(6 * -2)\right)\\& = 8 \ln \left(e^(-12)\right)\\& = -12 \cdot 8 \ln \left(e\right)\\& = -96(1)\\& = -96\end{aligned}

User VivekRajendran
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories