199k views
3 votes
Find an equation for the line that passes through the points (-5, -5) and (1, 3)

User Jay Zhu
by
7.8k points

2 Answers

2 votes
Solution
Let the lines be
(x1,y1)= (-5,-5)
(x2,y2)= (1,3)
Now
Using double point form
y-y1 =(y2-y1/x2-x1 )(x-x1)
or, y-(-5)= (3-(-5)/1-(-5)) (x-(-5))
or, y+5 = (3+5/1+5)(x+5)
or, y+5 = 8/6(x+5)
or, y+5 =4/3 (x+5)
or, 3(y+5) =4(x+5)
or, 3y+15=4x+20
or, 4x-3y+5= 0
Thus 4x-3y+5 =0 is the required equation,,
User Chocksmith
by
7.6k points
7 votes


(\stackrel{x_1}{-5}~,~\stackrel{y_1}{-5})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{3}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{3}-\stackrel{y1}{(-5)}}}{\underset{run} {\underset{x_2}{1}-\underset{x_1}{(-5)}}} \implies \cfrac{3 +5}{1 +5} \implies \cfrac{ 8 }{ 6 } \implies \cfrac{ 4 }{ 3 }


\begin{array}c \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-5)}=\stackrel{m}{ \cfrac{ 4 }{ 3 }}(x-\stackrel{x_1}{(-5)}) \implies y +5 = \cfrac{ 4 }{ 3 } ( x +5) \\\\\\ y+5=\cfrac{ 4 }{ 3 }x+\cfrac{ 20 }{ 3 }\implies y=\cfrac{ 4 }{ 3 }x+\cfrac{ 20 }{ 3 }-5\implies {\Large \begin{array}{llll} y=\cfrac{ 4 }{ 3 }x+\cfrac{5}{3} \end{array}}

User Sgraffite
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories