Answer:
![\begin{array}c\cline{1-2} \vphantom{\frac12} t& A\\\cline{1-2} \vphantom{\frac12} 10& \$20913.02 \\\cline{1-2} \vphantom{\frac12} 20& \$24297.46 \\\cline{1-2} \vphantom{\frac12} 30& \$28229.62 \\\cline{1-2} \vphantom{\frac12} 40& \$32798.14 \\\cline{1-2} \vphantom{\frac12} 50& \$38106.00 \\\cline{1-2} \end{array}](https://img.qammunity.org/2023/formulas/mathematics/college/6fayuou3aqaxdydfylv9l6cz6sbpux1wje.png)
Explanation:
![\boxed{\begin{minipage}{8.5 cm}\underline{Continuous Compounding Formula}\\\\$ A=Pe^(rt)$\\\\where:\\\\ \phantom{ww}$\bullet$ $A =$ final amount \\\phantom{ww}$\bullet$ $P =$ principal amount \\\phantom{ww}$\bullet$ $e =$ Euler's number (constant) \\\phantom{ww}$\bullet$ $r =$ annual interest rate (in decimal form) \\\phantom{ww}$\bullet$ $t =$ time (in years) \\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/oir64e7j62beobzcmo8fbxtlnsj9miksh2.png)
Given:
- P = $18,000
- r = 1.5% = 0.015
Substitute the values of P and r into the formula for continuous compounding interest to create an equation for A in terms of t:
![\implies A=18000e^(0.015t)](https://img.qammunity.org/2023/formulas/mathematics/college/vl0k3tqc1lw1661fbtel3bu6w1wnrec4xk.png)
To complete the table, substitute each given value of t into the equation.
![\begin{aligned}t=10 \implies A&=18000e^(0.015(10))\\&=18000e^(0.15)\\&=\$20913.02\; \; \sf (2\; d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/5r4dfkleca3aczkrec9dy4c5ffl5yhk5mm.png)
![\begin{aligned}t=20 \implies A&=18000e^(0.015(20))\\&=18000e^(0.3)\\&=\$24297.46\; \; \sf (2\; d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/jmzvyobahw7w51kc971c6ss7ifk27dy3us.png)
![\begin{aligned}t=30 \implies A&=18000e^(0.015(30))\\&=18000e^(0.45)\\&=\$28229.62\; \; \sf (2\; d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/xek6x3i64exp8oesz45gwwd4utsx3uq76v.png)
![\begin{aligned}t=40 \implies A&=18000e^(0.015(40))\\&=18000e^(0.6)\\&=\$32798.14\; \; \sf (2\; d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/2ef4bwjtofadig670iqz1md16vdoijuqb7.png)
![\begin{aligned}t=50 \implies A&=18000e^(0.015(50))\\&=18000e^(0.75)\\&=\$38106.00\; \; \sf (2\; d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/28wtonoa00sr63sff89ckxqvy5vrjzd50m.png)
Completed table:
![\begin{array}c\cline{1-2} \vphantom{\frac12} t& A\\\cline{1-2} \vphantom{\frac12} 10& \$20913.02 \\\cline{1-2} \vphantom{\frac12} 20& \$24297.46 \\\cline{1-2} \vphantom{\frac12} 30& \$28229.62 \\\cline{1-2} \vphantom{\frac12} 40& \$32798.14 \\\cline{1-2} \vphantom{\frac12} 50& \$38106.00 \\\cline{1-2} \end{array}](https://img.qammunity.org/2023/formulas/mathematics/college/6fayuou3aqaxdydfylv9l6cz6sbpux1wje.png)