Consider a cube of side a units, with sides along x, y and z axis and one vertex at origin, as in the figure.
Here AB and CD are two diagonals of the cube, because A and B are diagonally opposite corners, also C and D.
In the figure, coordinates of A is (0, 0, 0) and that of B is (a, a, a). Then vector AB is given by,
![\vec{\rm{AB}}=\rm{\left < a,\ a,\ a\right > }](https://img.qammunity.org/2023/formulas/mathematics/high-school/d284ymy6jyubq7vjvvlj4v4lwausv1tj9i.png)
Coordinates of C is (a, 0, 0) and that of D is (0, a, a). Then vector CD is given by,
![\vec{\rm{CD}}=\rm{\left < -a,\ a,\ a\right > }](https://img.qammunity.org/2023/formulas/mathematics/high-school/zqt3x1d5ay4lf9knc9lwt8qz2diiqggb7a.png)
The diagonals each have a magnitude of a√3.
![|\vec{\rm{AB}}|=|\vec{\rm{CD}}|=\rm{a\sqrt3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ljhyych06upfdyho6w4tnsh2gj5e5qo94n.png)
In the figure θ is the angle between the diagonals.
We take the dot product of the vectors AB and CD to get angle between them.
![\longrightarrow\vec{\rm{AB}}\cdot\vec{\rm{CD}}=|\vec{\rm{AB}}|\cdot|\vec{\rm{CD}}|\cdot\cos\theta](https://img.qammunity.org/2023/formulas/mathematics/high-school/yrg605lfgfarkkbltshpdjzgx1p37t7obq.png)
![\longrightarrow\rm{\left < a,\ a,\ a\right > \cdot\left < -a,\ a,\ a\right > =a\sqrt3\cdot a\sqrt3\cdot \cos\theta}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sfnprycpr3wbtdexw5513q5y2i69unwszm.png)
![\longrightarrow\rm{-a^2+a^2+a^2=3a^2\cos\theta}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zkob5plul0hcqojyhv05o2g9tea0nfrjwj.png)
![\longrightarrow\rm{a^2=3a^2\cos\theta}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ymiz1ygibc04wgfwrjm4kd44sxzosi8tx4.png)
![\longrightarrow\rm{\cos\theta=(a^2)/(3a^2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/98l061fuxrbg78g5x4eytzurv8o93vh974.png)
![\longrightarrow\rm{\underline{\underline{\cos\theta=(1)/(3)}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bk2i458u3607r7nze3fg1ks8wyul6qzgkm.png)
The angle between the diagonals satisfy this equation.
Hence Proved!