57.2k views
5 votes
Find the equation of tangent normal to the curve y=3x-x^3 at points where it cuts the x-axis​

User TheJerm
by
8.1k points

1 Answer

2 votes

Correct Question:-

Find the equations of lines normal to the curve
\rm{y=3x-x^3} at points where it cuts the x axis.


\quad

Solution:-

The given curve,


\longrightarrow\rm{y=3x-x^3}

Differentiating wrt x we get,


\longrightarrow\rm{(dy)/(dx)=3-3x^2}

This term is slope of tangent on the curve at a point (x, y).

Taking reciprocal,


\longrightarrow\rm{(dx)/(dy)=(1)/(3-3x^2)}

and multiplying by -1,


\longrightarrow\rm{-(dx)/(dy)=(1)/(3x^2-3)}

Now this term is slope of normal on the curve at a point (x, y).


\longrightarrow\rm{n(x)=(1)/(3(x^2-1))}


\quad

The points where the curve
\rm{y=3x-x^3} cuts x axis is obtained by equating y = 0.


\longrightarrow\rm{0=y}


\longrightarrow\rm{0=3x-x^3}


\longrightarrow\rm{0=x(3-x^2)}


\longrightarrow\rm{0=x(\sqrt3-x)(\sqrt3+x)}


\Longrightarrow\rm{x\in\left\{-\sqrt3,\ 0,\ \sqrt3\right\}}

So the points where the curve cuts x axis are (-√3, 0), (0, 0) and (√3, 0).


\quad

Consider the point (-√3, 0).

The slope of normal at this point is,


\longrightarrow\rm{n(-\sqrt3)=(1)/(3((-\sqrt3)^2-1))}


\longrightarrow\rm{n(-\sqrt3)=(1)/(6)}

Then equation of normal at this point is,


\longrightarrow\rm{y-0=(1)/(6)(x+\sqrt3)}


\longrightarrow\bf{x-6y+\sqrt3=0}


\quad

Consider the point (0, 0).

The slope of normal at this point is,


\longrightarrow\rm{n(0)=(1)/(3((0)^2-1))}


\longrightarrow\rm{n(0)=-(1)/(3)}

Then equation of normal at this point is,


\longrightarrow\rm{y-0=-(1)/(3)(x-0)}


\longrightarrow\bf{x+3y=0}


\quad

Consider the point (√3, 0).

The slope of normal at this point is,


\longrightarrow\rm{n(\sqrt3)=(1)/(3((\sqrt3)^2-1))}


\longrightarrow\rm{n(\sqrt3)=(1)/(6)}

Then equation of normal at this point is,


\longrightarrow\rm{y-0=(1)/(6)(x-\sqrt3)}


\longrightarrow\bf{x-6y-\sqrt3=0}


\quad

Hence the equations of lines normal to the curve
\rm{y=3x-x^3} at points where it cuts x axis are,


\longrightarrow\left\{\begin{array}{ll}\bf{x-6y-\sqrt3}&\bf{=0}\\\bf{x+3y}&\bf{=0}\\\bf{x-6y+\sqrt3}&\bf{=0}\end{array}\right.

User Brian Noguchi
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories