Correct Question:-
Find the equations of lines normal to the curve
at points where it cuts the x axis.
![\quad](https://img.qammunity.org/2023/formulas/mathematics/high-school/sf8j0uw8zeq6itu8q0bnbfp6w2kiibev6a.png)
Solution:-
The given curve,
![\longrightarrow\rm{y=3x-x^3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qy4jzty15cj0izp4xicto0rgt440gta4mc.png)
Differentiating wrt x we get,
![\longrightarrow\rm{(dy)/(dx)=3-3x^2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jlwaa5cf7yf06gbodlcf3rq1b6v27gj82t.png)
This term is slope of tangent on the curve at a point (x, y).
Taking reciprocal,
![\longrightarrow\rm{(dx)/(dy)=(1)/(3-3x^2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/aeoqhoytnbjlnmdjfn5381u9v5qfhx40dp.png)
and multiplying by -1,
![\longrightarrow\rm{-(dx)/(dy)=(1)/(3x^2-3)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sdcl7ufsyjzxxlkmwrukq9vh6j1oraqfhp.png)
Now this term is slope of normal on the curve at a point (x, y).
![\longrightarrow\rm{n(x)=(1)/(3(x^2-1))}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t26yvi0vxyy1qln6ci1m5sevalfg8drbxa.png)
![\quad](https://img.qammunity.org/2023/formulas/mathematics/high-school/sf8j0uw8zeq6itu8q0bnbfp6w2kiibev6a.png)
The points where the curve
cuts x axis is obtained by equating y = 0.
![\longrightarrow\rm{0=y}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ea22he7lhm2qmbbdwfqtu2fkudtktit9nv.png)
![\longrightarrow\rm{0=3x-x^3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/120nuyzvfapanatg2b50zm5npnbbquiaa0.png)
![\longrightarrow\rm{0=x(3-x^2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5bd9hxa8kjv0sphxgn4obl0rc09c18zev9.png)
![\longrightarrow\rm{0=x(\sqrt3-x)(\sqrt3+x)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/njc8spx39sxcp4zelfpuxjwm5kxqp7jh2l.png)
![\Longrightarrow\rm{x\in\left\{-\sqrt3,\ 0,\ \sqrt3\right\}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/877biqrg6zv6dzn8p801ub6eqlp5rd4uyc.png)
So the points where the curve cuts x axis are (-√3, 0), (0, 0) and (√3, 0).
![\quad](https://img.qammunity.org/2023/formulas/mathematics/high-school/sf8j0uw8zeq6itu8q0bnbfp6w2kiibev6a.png)
Consider the point (-√3, 0).
The slope of normal at this point is,
![\longrightarrow\rm{n(-\sqrt3)=(1)/(3((-\sqrt3)^2-1))}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tpnaomttctx0k4dwfgl0agd3kv0k7b7cqh.png)
![\longrightarrow\rm{n(-\sqrt3)=(1)/(6)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9c9ivkfb6ec8mcnnkvheenkh92c61v6dhd.png)
Then equation of normal at this point is,
![\longrightarrow\rm{y-0=(1)/(6)(x+\sqrt3)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a9fic7z9pgddhpr6ehfg2skmnb48i4jl92.png)
![\longrightarrow\bf{x-6y+\sqrt3=0}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lgz6a05olznf3q3zkiuhhyzc5801fi6p24.png)
![\quad](https://img.qammunity.org/2023/formulas/mathematics/high-school/sf8j0uw8zeq6itu8q0bnbfp6w2kiibev6a.png)
Consider the point (0, 0).
The slope of normal at this point is,
![\longrightarrow\rm{n(0)=(1)/(3((0)^2-1))}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5b1bhqdwh1wrlq5ztcxb9ya4vtp5botr2k.png)
![\longrightarrow\rm{n(0)=-(1)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/iedr33gnl4ndlibsai5f6xls11cg9gyj2v.png)
Then equation of normal at this point is,
![\longrightarrow\rm{y-0=-(1)/(3)(x-0)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/64bp8hw136cqpq1zk6lchlmx4lj0ey3k7o.png)
![\longrightarrow\bf{x+3y=0}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lhpudaxhjptyyenyqlpe6840dh76cestbs.png)
![\quad](https://img.qammunity.org/2023/formulas/mathematics/high-school/sf8j0uw8zeq6itu8q0bnbfp6w2kiibev6a.png)
Consider the point (√3, 0).
The slope of normal at this point is,
![\longrightarrow\rm{n(\sqrt3)=(1)/(3((\sqrt3)^2-1))}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5wt7x6hpyoj0oju9qs17c8gof6rwca3d1g.png)
![\longrightarrow\rm{n(\sqrt3)=(1)/(6)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rvnyf1qxyflj89ibx6wr9wnyae054vzv1u.png)
Then equation of normal at this point is,
![\longrightarrow\rm{y-0=(1)/(6)(x-\sqrt3)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t7y88u62h3s8kq45yzstzoqlrn9l3je1v4.png)
![\longrightarrow\bf{x-6y-\sqrt3=0}](https://img.qammunity.org/2023/formulas/mathematics/high-school/k086ow08v12wypcjkz4avqz5gp2df6kc5u.png)
![\quad](https://img.qammunity.org/2023/formulas/mathematics/high-school/sf8j0uw8zeq6itu8q0bnbfp6w2kiibev6a.png)
Hence the equations of lines normal to the curve
at points where it cuts x axis are,
![\longrightarrow\left\{\begin{array}{ll}\bf{x-6y-\sqrt3}&\bf{=0}\\\bf{x+3y}&\bf{=0}\\\bf{x-6y+\sqrt3}&\bf{=0}\end{array}\right.](https://img.qammunity.org/2023/formulas/mathematics/high-school/qmkti1yeyjl0jgi7zvodlyws4wwr7acwmc.png)