165k views
0 votes
If (x+a) is a factor of x^2+px+q and x^2+mx+n, then prove that a=(n-q) /(m-p)​​

1 Answer

0 votes

Given polynomials are,


\rm{f(x)=x^2+px+q}


\rm{g(x)=x^2+mx+n}

According to Remainder Theorem, if (x + a) is a factor of f(x), then,


\longrightarrow\rm{0=f(-a)}


\longrightarrow\rm{0=(-a)^2+p(-a)+q}


\longrightarrow\rm{0=a^2-pa+q\quad\dots(1)}

Similarly, if (x + a) is a factor of g(x), then,


\longrightarrow\rm{0=g(-a)}


\longrightarrow\rm{0=(-a)^2+m(-a)+n}


\longrightarrow\rm{0=a^2-ma+n\quad\dots(2)}

Subtracting (2) from (1),


\longrightarrow\rm{0=(a^2-pa+q)-(a^2-ma+n)}


\longrightarrow\rm{0=a^2-pa+q-a^2+ma-n}


\longrightarrow\rm{0=(m-p)a+q-n}


\longrightarrow\rm{0=(m-p)a-(n-q)}


\longrightarrow\rm{(m-p)a=n-q}


\longrightarrow\rm{\underline{\underline{a=(n-q)/(m-p)}}}

Hence Proved!

User Thijser
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories