165k views
0 votes
If (x+a) is a factor of x^2+px+q and x^2+mx+n, then prove that a=(n-q) /(m-p)​​

1 Answer

0 votes

Given polynomials are,


\rm{f(x)=x^2+px+q}


\rm{g(x)=x^2+mx+n}

According to Remainder Theorem, if (x + a) is a factor of f(x), then,


\longrightarrow\rm{0=f(-a)}


\longrightarrow\rm{0=(-a)^2+p(-a)+q}


\longrightarrow\rm{0=a^2-pa+q\quad\dots(1)}

Similarly, if (x + a) is a factor of g(x), then,


\longrightarrow\rm{0=g(-a)}


\longrightarrow\rm{0=(-a)^2+m(-a)+n}


\longrightarrow\rm{0=a^2-ma+n\quad\dots(2)}

Subtracting (2) from (1),


\longrightarrow\rm{0=(a^2-pa+q)-(a^2-ma+n)}


\longrightarrow\rm{0=a^2-pa+q-a^2+ma-n}


\longrightarrow\rm{0=(m-p)a+q-n}


\longrightarrow\rm{0=(m-p)a-(n-q)}


\longrightarrow\rm{(m-p)a=n-q}


\longrightarrow\rm{\underline{\underline{a=(n-q)/(m-p)}}}

Hence Proved!

User Thijser
by
3.7k points