We are asked to find the first derivative of,
![\longrightarrow g(x) = √(x^2+2x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/x0j6cjsyk3zq5c4uviqaed5o6swva8c75a.png)
Here we can write the term
by adding and subtracting 1 as,
![x^2+2x = x^2+2x+1-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/5bm0v2uoy09qejx3cr3ercsaejxhodr84a.png)
![x^2+2x = (x+1)^2-1\quad[\because\, x^2+2x+1=(x+1)^2]](https://img.qammunity.org/2023/formulas/mathematics/high-school/cdn5l5fwdtd8wxw71l04xu55vpf4in7p37.png)
Thus,
![\longrightarrow g(x) = √((x+1)^2-1)\quad\dots(1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rzkinclhq5nfnuscwf32g1bddb2d0hcw4z.png)
Now take,
![x+1=\sec\theta\quad\dots(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fnet2tthn5m7ilw1u92nq13ahaz5bluq9w.png)
![x=\sec\theta-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/nkzbw47tj6t2zx6dnmnl11rinkp0q5belw.png)
![dx=\sec\theta\tan\theta\, d\theta](https://img.qammunity.org/2023/formulas/mathematics/high-school/nt9obfu9zdcea6egmeqana0bspwcasl5hn.png)
![(d\theta)/(dx)=(1)/(\sec\theta\tan\theta)\quad\dots(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2l1znev6m1sshob7morylcgpzt7f0kwfj2.png)
Then (1) becomes,
![\longrightarrow g(x) = √(sec^2\theta-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2or8vtwjk8bwhz4gi3277w18badig7rxzv.png)
We have,
![\sec^2\theta-1=\tan^2\theta](https://img.qammunity.org/2023/formulas/mathematics/high-school/pmypp2uzlpydho78qvysigb2xcqes1azr8.png)
So we get,
![\longrightarrow g(x) = \tan\theta](https://img.qammunity.org/2023/formulas/mathematics/high-school/q13w9a5pn630s9ixeugt8x4fgvnr6nt2bv.png)
Now,
![\longrightarrow g'(x) = (d)/(dx)\,[\tan\theta]](https://img.qammunity.org/2023/formulas/mathematics/high-school/dolzziin5rb2wfqbar0tc6eucdnnjngbk0.png)
By chain rule,
![\longrightarrow g'(x) = (d)/(d\theta)\,[\tan\theta]\cdot(d\theta)/(dx)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6ieqmjtjhp7yofu35a8udxrwqu06g7zsh1.png)
![\longrightarrow g'(x) = \sec^2\theta\cdot(1)/(\sec\theta\tan\theta)\quad\quad\textrm{[From (3)]}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t35tbrth0mlahprjj1b4s35a167agne9y7.png)
![\longrightarrow g'(x) = \sec\theta\cdot(1)/(\tan\theta)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6zqbrnszevyzfdbz0q0hc5kq5c7j6kmp6v.png)
![\longrightarrow g'(x)=(1)/(\cos\theta)\cdot(\cos\theta)/(\sin\theta)](https://img.qammunity.org/2023/formulas/mathematics/high-school/4wjr69l2jgs0sa0ozdtpdk0uxc03wedoix.png)
![\longrightarrow g'(x)=(1)/(\sin\theta)\quad\dots(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6gcy0kwxsbcbg2nurgkr0buale2xa2tlkg.png)
But we have,
![\sin^2\theta+\cos^2\theta=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/yasbp4m63170zqrlqzkmsr0ulid314eyr9.png)
![\sin\theta=√(1-\cos^2\theta)](https://img.qammunity.org/2023/formulas/mathematics/high-school/86yh2kekksnmz2ah7b3o1i2jfuyi0c79j7.png)
![\sin\theta=\sqrt{1-(1)/(\sec^2\theta)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/aiv7rq7f9wvinv90zvftg4xifzgfenfjog.png)
![\sin\theta=(√(\sec^2\theta-1))/(\sec\theta)](https://img.qammunity.org/2023/formulas/mathematics/high-school/dswof69ocd2ecv0nt4ujp30k8eaiue4g6q.png)
![\sin\theta=(√((x+1)^2-1))/(x+1)\quad\quad\textrm{[From (2)]}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9uv19ust7s43bin8inm67ajo6ibxxx5xhv.png)
![\sin\theta=(√(x^2+2x))/(x+1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/4km4d5dain20qow9kouxbwwy121jj1e0wp.png)
Hence (4) becomes,
![\longrightarrow\underline{\underline{g'(x)=(x+1)/(√(x^2+2x))}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ut5rrmacrz0oq5j2v36u0klpq8y62mzqa9.png)
This is the first derivative of the given function.