228k views
2 votes
FIND THE FIRST DERIVATIVE OF g(x)=√x² + 2x​​

User Janisha
by
8.2k points

1 Answer

3 votes

We are asked to find the first derivative of,


\longrightarrow g(x) = √(x^2+2x)

Here we can write the term
x^2+2x by adding and subtracting 1 as,


x^2+2x = x^2+2x+1-1


x^2+2x = (x+1)^2-1\quad[\because\, x^2+2x+1=(x+1)^2]

Thus,


\longrightarrow g(x) = √((x+1)^2-1)\quad\dots(1)

Now take,


x+1=\sec\theta\quad\dots(2)


x=\sec\theta-1


dx=\sec\theta\tan\theta\, d\theta


(d\theta)/(dx)=(1)/(\sec\theta\tan\theta)\quad\dots(3)

Then (1) becomes,


\longrightarrow g(x) = √(sec^2\theta-1)

We have,


\sec^2\theta-1=\tan^2\theta

So we get,


\longrightarrow g(x) = \tan\theta

Now,


\longrightarrow g'(x) = (d)/(dx)\,[\tan\theta]

By chain rule,


\longrightarrow g'(x) = (d)/(d\theta)\,[\tan\theta]\cdot(d\theta)/(dx)


\longrightarrow g'(x) = \sec^2\theta\cdot(1)/(\sec\theta\tan\theta)\quad\quad\textrm{[From (3)]}


\longrightarrow g'(x) = \sec\theta\cdot(1)/(\tan\theta)


\longrightarrow g'(x)=(1)/(\cos\theta)\cdot(\cos\theta)/(\sin\theta)


\longrightarrow g'(x)=(1)/(\sin\theta)\quad\dots(4)

But we have,


\sin^2\theta+\cos^2\theta=1


\sin\theta=√(1-\cos^2\theta)


\sin\theta=\sqrt{1-(1)/(\sec^2\theta)}


\sin\theta=(√(\sec^2\theta-1))/(\sec\theta)


\sin\theta=(√((x+1)^2-1))/(x+1)\quad\quad\textrm{[From (2)]}


\sin\theta=(√(x^2+2x))/(x+1)

Hence (4) becomes,


\longrightarrow\underline{\underline{g'(x)=(x+1)/(√(x^2+2x))}}

This is the first derivative of the given function.

User Zsolt Szatmari
by
8.8k points

Related questions

asked Dec 9, 2023 24.2k views
Nverba asked Dec 9, 2023
by Nverba
7.9k points
1 answer
5 votes
24.2k views
1 answer
4 votes
89.8k views