217k views
0 votes
The sum of n terms of 1^ 2 ,3^ 2 ,5^ 2 ,7^ 2 ,...., is (b) (n / 2)(4n ^ 2 - 1) a)(n/3)(4n^ 2 -1)​

User Spindoctor
by
8.3k points

1 Answer

2 votes

Explanation:

We're asked to find the simplified form of,


\longrightarrow S=\underbrace{1^2+3^2+5^2+7^2+\,\dots}_{\textrm{$n$ terms}}

The n'th term of the sequence
1^2,\ 3^2,\ 5^2,\ 7^2,\,\dots is
(2n-1)^2. So,


\longrightarrow S=1^2+3^2+5^2+\,\dots\,+(2n-1)^2

We know the following sum,


\longrightarrow 1^2+2^2+3^2+\,\dots\,+n^2=(n(n+1)(2n+1))/(6)

This is expression for the sum of squares of first 'n' natural numbers. In case of '2n' natural numbers,


\longrightarrow 1^2+2^2+3^2+\,\dots\,+(2n)^2=(2n(2n+1)(4n+1))/(6)

We separate odd squares and even squares in the LHS.


\begin{aligned}\longrightarrow\ \ &\Big(1^2+3^2+5^2+\,\dots\,+(2n-1)^2\Big)&\\+\ \ &\Big(2^2+4^2+6^2+\,\dots\,+(2n)^2\Big)&=(2n(2n+1)(4n+1))/(6)\end{aligned}

We can take 4 common from the sum of even squares.


\begin{aligned}\longrightarrow\ \ &\Big(1^2+3^2+5^2+\,\dots\,+(2n-1)^2\Big)&\\+\ \ &4\Big(1^2+2^2+3^2+\,\dots\,+n^2\Big)&=(2n(2n+1)(4n+1))/(6)\end{aligned}

Now the sums in LHS are, as written above,


1^2+3^2+5^2+\,\dots\,+(2n-1)^2=S


1^2+2^2+3^2+\,\dots\,+n^2=(n(n+1)(2n+1))/(6)

So,


\longrightarrow S+(4n(n+1)(2n+1))/(6)=(2n(2n+1)(4n+1))/(6)


\longrightarrow S=(2n(2n+1)(4n+1))/(6)-(4n(n+1)(2n+1))/(6)


\longrightarrow S=(2n+1)/(6)\Big[2n(4n+1)-4n(n+1)\Big]


\longrightarrow S=(2n+1)/(6)\Big[4n^2-2n\Big]


\longrightarrow S=(2n(2n-1)(2n+1))/(6)


\longrightarrow\underline{\underline{S=(n)/(3)\,(4n^2-1)}}

This is the expression for the sum of squares of first 'n' odd natural numbers.

User Helfer
by
7.8k points