Explanation:
We're asked to find the simplified form of,
![\longrightarrow S=\underbrace{1^2+3^2+5^2+7^2+\,\dots}_{\textrm{$n$ terms}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gr2i1i4f2d25k3vchpz35pg8voxve6x5sx.png)
The n'th term of the sequence
is
So,
![\longrightarrow S=1^2+3^2+5^2+\,\dots\,+(2n-1)^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/q8qspspohratp88qzaq7ah5olrzoeiwr7r.png)
We know the following sum,
![\longrightarrow 1^2+2^2+3^2+\,\dots\,+n^2=(n(n+1)(2n+1))/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wuo8bztnblmwjx8qwvuzr9wllbucwmieg5.png)
This is expression for the sum of squares of first 'n' natural numbers. In case of '2n' natural numbers,
![\longrightarrow 1^2+2^2+3^2+\,\dots\,+(2n)^2=(2n(2n+1)(4n+1))/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/t2oidaj18z92evaswnmxjs5tly4k48imo3.png)
We separate odd squares and even squares in the LHS.
![\begin{aligned}\longrightarrow\ \ &\Big(1^2+3^2+5^2+\,\dots\,+(2n-1)^2\Big)&\\+\ \ &\Big(2^2+4^2+6^2+\,\dots\,+(2n)^2\Big)&=(2n(2n+1)(4n+1))/(6)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/azuk6byez810jkek44ze1xefy2xpp440xv.png)
We can take 4 common from the sum of even squares.
![\begin{aligned}\longrightarrow\ \ &\Big(1^2+3^2+5^2+\,\dots\,+(2n-1)^2\Big)&\\+\ \ &4\Big(1^2+2^2+3^2+\,\dots\,+n^2\Big)&=(2n(2n+1)(4n+1))/(6)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4cdbdxdn7xxoq5uq2ltuxnolszd9gvr7ci.png)
Now the sums in LHS are, as written above,
![1^2+3^2+5^2+\,\dots\,+(2n-1)^2=S](https://img.qammunity.org/2023/formulas/mathematics/high-school/k3u2usri8jqx1fni74u0cy5oaole8ms173.png)
![1^2+2^2+3^2+\,\dots\,+n^2=(n(n+1)(2n+1))/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/r2l6a4sgrwvgyctmrnu13twvtn4iyrq9hx.png)
So,
![\longrightarrow S+(4n(n+1)(2n+1))/(6)=(2n(2n+1)(4n+1))/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pdzamkj88pc0js01xpg497unjsloqvai2c.png)
![\longrightarrow S=(2n(2n+1)(4n+1))/(6)-(4n(n+1)(2n+1))/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/u89x0a1qcg8bt057vnuwvqy5lpxledcyjj.png)
![\longrightarrow S=(2n+1)/(6)\Big[2n(4n+1)-4n(n+1)\Big]](https://img.qammunity.org/2023/formulas/mathematics/high-school/rkmtoor6qax5tqj4v7ih6p3vzi1u5ccfw0.png)
![\longrightarrow S=(2n+1)/(6)\Big[4n^2-2n\Big]](https://img.qammunity.org/2023/formulas/mathematics/high-school/qruekj70z18sfm41wp9fd5r202sqejws7c.png)
![\longrightarrow S=(2n(2n-1)(2n+1))/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/kcwxn5d9cv8wrejklv1h520sjhf4nry47l.png)
![\longrightarrow\underline{\underline{S=(n)/(3)\,(4n^2-1)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6jc5fq4p07t5gf27pz3s3rd5wsjojqdxxo.png)
This is the expression for the sum of squares of first 'n' odd natural numbers.