142k views
4 votes
Tan 32 deg + tan 88 deg / 1 - tan32 tan88 = -√3

User Noh
by
5.2k points

1 Answer

2 votes

Answer:

Explanation:


\displaystyle\\(tan32^0+tan88^0)/(1-tan32^0tan88^0) \ \ \ \ (1)\\\\Let\ \alpha =32^0\ and\ \beta =88^0\\\\Hence,\ expression\ (1)\ will \ look\ like\ this:\\\\(tan\alpha +tan\beta )/(1-tan\alpha tan\beta )\\

The trigonometric formula for adding angles for a tangent is as follows:


\displaystyle\\\\\boxed {tan(\alpha +\beta )=(tan\alpha +tan\beta )/(1-tan\alpha tan\beta )}

Thus,


\displaystyle\\(tan32^0 +tan88^0 )/(1-tan32^0 tan88^0 )=tan(32^0+88^0)\\\\\\(tan32^0 +tan88^0 )/(1-tan32^0 tan88^0 )=tan120^0

Calculate the value of tan120°:


tan120^0=tan(90^0+30^0)\\\\tan120^0=-cot30&^0\\\\tan120^0=-√(3)

So,


\displaystyle\\(tan32^0 +tan88^0 )/(1-tan32^0 tan88^0 )\equiv-√(3)

User Anthony Damico
by
5.5k points