Answer:
![(x-2)^(2)(x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/15srn51iuppzdcmi2ad5cncdxxjlg6b9kf.png)
Explanation:
For
we can test out different values of x until the polynomial is zero, in this case 2 works so we can use long division or seperation of terms and factoring. But to show work, I will use seperation and factor.
=
![(x-2)(x^(2)+2x+4) -12 (x-2)](https://img.qammunity.org/2023/formulas/mathematics/college/vcbip5jnuo65l5dn8sc562kdqom8txz3ux.png)
=
![(x-2)(x^(2)+2x-8)](https://img.qammunity.org/2023/formulas/mathematics/college/ezfdyw8716vqj8a7gf5d0oyzsb2eqadn2t.png)
Then we can factor the second-degree polynomial to get
or
![(x-2)^(2)(x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/15srn51iuppzdcmi2ad5cncdxxjlg6b9kf.png)