Answer:
![p\left((2)/(3)\right)=-(1280)/(27)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2w9o0euz7gyidju61l72ks3zxzvix9odqg.png)
![p \left(-1 \right)=3](https://img.qammunity.org/2023/formulas/mathematics/high-school/d4aga8n4fcwagofiq196qiffxb3gb4sna4.png)
Explanation:
Remainder Theorem
When we divide a polynomial p(x) by (x − a) the remainder is p(a).
Given:
![\begin{cases}p(x)=6x^4+19x^3-2x^2-44x-24\\\\ a=(2)/(3)\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bk66o0wv3vono8fqo08337hszwlqaqhuha.png)
To find p(a), set up the synthetic division problem with the coefficients of the polynomial p(x) as the dividend and "a" as the divisor.
![\begin{array}ccccc(2)/(3) &6&19&-2&-44&-24\\\cline{1-1}\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/w1ht1dlo73yk2w1s5rxhal5u424pi7guwc.png)
Bring the leading coefficient straight down:
![\begin{array}ccccc(2)/(3) & 6 & 19 & -2 & -44& -24\\\cline{1-1}& \downarrow & & & & \\\cline{2-6}& 6\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ix5c80xt9bgzxz17cypjymqmth5qe1dai6.png)
Multiply the number you brought down with the number in the division box and put the result in the next column (under the 19):
![\begin{array}c(2)/(3) & 6 & 19 & -2 & -44& -24\\\cline{1-1}& \downarrow &4 & & & \\\cline{2-6}& 6\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5ep8cs9zs7lmcexjsm2lw3rr8o15fbfaph.png)
Add the two numbers together and put the result in the bottom row:
![\begin{array}c(2)/(3) & 6 & 19 & -2 & -44& -24\\\cline{1-1}& \downarrow &4 & & & \\\cline{2-6}& 6&23\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/r98sgw7br5gwkg75u90z53s2j65flj2n92.png)
Repeat:
![\begin{array}crrrr(2)/(3) & 6 & 19 & -2 & -44& -24\\\cline{1-1}& \vphantom{\frac12}\downarrow &4 &(46)/(3) & & \\\cline{2-6} \vphantom{\frac12}& 6&23&(40)/(3)\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/om7azzlfhneb8fx42tqp1hojc2he27vjdz.png)
![\begin{array}crrrr(2)/(3) & 6 & 19 & -2 & -44& -24\\\cline{1-1}& \vphantom{\frac12}\downarrow &4 &(46)/(3) & (80)/(9)& \\\cline{2-6}& \vphantom{\frac12}6&23&(40)/(3)&-(316)/(9)\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/f7pfv4m1t2u7uun2bx6cnfw3wp9jhl8lze.png)
![\begin{array}crrrr(2)/(3) & 6 & 19 & -2 & -44& -24\\\cline{1-1}&\vphantom{\frac12} \downarrow &4 &(46)/(3) & (80)/(9)&-(632)/(27) \\\cline{2-6}& \vphantom{\frac12}6&23&(40)/(3)&-(316)/(9)&-(1280)/(27)\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xns0twjvn965340qpr0gitwlrgx9k3emhb.png)
The last number (remainder) is
![-(1280)/(27)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6mzmgdvngslasx8grvp3tlfszi7z2d7t0g.png)
Therefore, according to the remainder theorem:
![p\left((2)/(3)\right)=-(1280)/(27)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2w9o0euz7gyidju61l72ks3zxzvix9odqg.png)
Check by substituting a = 2/3 into p(x):
![\implies p\left((2)/(3)\right)=6\left((2)/(3)\right)^4+19\left((2)/(3)\right)^3-2\left((2)/(3)\right)^2-44\left((2)/(3)\right)-24](https://img.qammunity.org/2023/formulas/mathematics/high-school/zapmcmzg546d4oqlydmdio4d1mfcbigkuj.png)
![\implies p\left((2)/(3)\right)=(32)/(27)+(152)/(27)-(8)/(9)-(88)/(3)-24](https://img.qammunity.org/2023/formulas/mathematics/high-school/yb8tgv6vfo2h6o7szeq4trv9ine95qbz1i.png)
![\implies p\left((2)/(3)\right)=-(1280)/(27)](https://img.qammunity.org/2023/formulas/mathematics/high-school/j94g8pfg6egz0i4h50phvprcibk4ox9bz5.png)
-------------------------------------------------------------------------------------------------
Given:
![\begin{cases}p(x)=x^3+3x^2-5x-4\\ a=-1\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5c9ldy9lmjtoyhklex7mtbgxzngtqz8pal.png)
To find p(a), set up the synthetic division problem with the coefficients of the polynomial p(x) as the dividend and "a" as the divisor.
![\begin{array}c-1 &1&3&-5&-4\\\cline{1-1}\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3br8ormvtp0k2n2dqhf7nuiwhl8yxbk9bj.png)
Bring the leading coefficient straight down:
![\begin{array}c -1 & 1&3&-5&-4\\\cline{1-1}& \downarrow & & & \\\cline{2-5}& 1\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3wc79yefa1g2259kg8ye7ssf1wucc07q4f.png)
Multiply the number you brought down with the number in the division box and put the result in the next column (under the 3):
![\begin{array}crrr -1 & 1&3&-5&-4\\\cline{1-1}& \downarrow & -1& & \\\cline{2-5}& 1\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/oq762xyctibc32xfshvppu7pobgnu6mxju.png)
Add the two numbers together and put the result in the bottom row:
![\begin{array}c -1 & 1&3&-5&-4\\\cline{1-1}& \downarrow & -1& & \\\cline{2-5}& 1&2\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2efmta4r59iv2k4kdiupbf6r594yo8ekdy.png)
Repeat:
![\begin{array}c -1 & 1&3&-5&-4\\\cline{1-1}& \downarrow & -1& -2& \\\cline{2-5}& 1&2&-7\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kb4r0q4xis41aqdg37qc2cyxk3cr7himo4.png)
![\begin{array}c -1 & 1&3&-5&-4\\\cline{1-1}& \downarrow & -1& -2& 7\\\cline{2-5}& 1&2&-7&3\end{array}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mwcaagughvblgbhrbx5swhnaxtdspnady1.png)
The last number (remainder) is 3.
Therefore, according to the remainder theorem:
![p \left(-1 \right)=3](https://img.qammunity.org/2023/formulas/mathematics/high-school/d4aga8n4fcwagofiq196qiffxb3gb4sna4.png)
Check by substituting a = -1 into p(x):
![\implies p(-1)=(-1)^3+3(-1)^2-5(-1)-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/e60lywayl3r1y4yi27yblsa5uucs1lg5c9.png)
![\implies p(-1)=-1+3+5-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/oflrpl0p9c2mbn7ptswojesr5eyqm1l13q.png)
![\implies p(-1)=3](https://img.qammunity.org/2023/formulas/mathematics/high-school/skya9s24ds4aaufrly7jsg4i171c4b10rx.png)