Answer:
phase shift in degrees
phase shift in pi radians
Explanation:
Here is the equation for the graph of the cosine function.
y = A sin(B(x + C)) + D
A = amplitude
period is 2π/B
C = phase shift
D = vertical shift
Lets convert 1800° to Pi radians.
![1800*(\pi )/(180)](https://img.qammunity.org/2023/formulas/mathematics/high-school/9evl9r1yo8r6v63wkqux461dl4u2m5wj20.png)
![180(10)*(\pi )/(180)](https://img.qammunity.org/2023/formulas/mathematics/high-school/sag132teoqd34gf0ivmfdkmmn60ysxxwfd.png)
![10*(\pi )/(180)](https://img.qammunity.org/2023/formulas/mathematics/high-school/91u9vn7egcu50aegfyth2qf637bkz0bzyq.png)
radians
A = 3
B=2π/ 10π simplifies to
![(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/geika1bebdh49vlmy8m866aot9b5u0n47d.png)
C = phase shift
D = 4
phase shift in degrees
phase shift in pi radians