Answer:
![S_(\infty)=64](https://img.qammunity.org/2023/formulas/mathematics/college/5cd7dzv3biedh366908ghu4gkbyony93e7.png)
Explanation:
Given geometric series:
![16+12+9+(27)/(4)+...](https://img.qammunity.org/2023/formulas/mathematics/college/65w7exo3vo507itu3yms5cllyzinbgnclm.png)
By inspection, the first term, a, is:
![\implies a=16](https://img.qammunity.org/2023/formulas/mathematics/college/7nmffz848dke2vyuillv80dpit2b8f8jp4.png)
Find the common ratio, r, by dividing one term by the previous term:
![\implies r=(12)/(16)=(3)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/kjxz4vicc15el79sgqf4p81w69pf8urcp9.png)
![\boxed{\begin{minipage}{5.5 cm}\underline{Sum of an infinite geometric series}\\\\$S_(\infty)=(a)/(1-r)$\\\\where:\\\phantom{ww}$\bullet$ $a$ is the first term. \\ \phantom{ww}$\bullet$ $r$ is the common ratio.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/wqe1yovv9oj0qtwcefo3cz2gqcbih9840z.png)
To find the sum of the infinite geometric series, substitute the found values of a and r into the formula:
![\implies S_(\infty)=(16)/(1-(3)/(4))](https://img.qammunity.org/2023/formulas/mathematics/college/x0phvc5vuzvt76fqxn9k4acnlm5v1v28yy.png)
![\implies S_(\infty)=(16)/((1)/(4))](https://img.qammunity.org/2023/formulas/mathematics/college/sf7otkyq53yy2djw82vz3hl5a5zigio8jr.png)
![\implies S_(\infty)=16 * 4](https://img.qammunity.org/2023/formulas/mathematics/college/1yz0ulvjwiuqgj44zvveb3q8o1wmftbbym.png)
![\implies S_(\infty)=64](https://img.qammunity.org/2023/formulas/mathematics/college/6obrd7zcovzgs5mxoz8gwbh6b5sb2hdj9t.png)