120k views
25 votes
Please answer the complex system

Please answer the complex system-example-1
User Axon
by
4.9k points

1 Answer

1 vote

Answer:


y = i


x = 1

Explanation:

-------------------------------------------------------

Make
x the subject for
ix-2y=-i :

-------------------------------------------------------

Add 2y to both sides:


\implies ix=-i+2y

Divide both sides by i:


\implies x=(-i+2y)/(i)

To remove i from the denominator, multiply the numerator and denominator by its complex conjugate:


\implies x=(-i+2y)/(i) *(-i)/(-i)


\implies x=(i^2-2iy)/(-i^2)

Apply the imaginary number rule
i^2=-1 :


\implies x=(-1-2iy)/(-(-1))


\implies x=(-1-2iy)/(1)


\implies x=-1-2iy

-----------------------------------------------------------------------------------------------

Substitute
x=-1-2iy into
(1+i)x-2iy=3+i and make y the subject:

-----------------------------------------------------------------------------------------------


\implies (1+i)(-1-2iy)-2iy=3+i

Apply complex arithmetic rule
(a+bi)(c+di)=(ac-bd)+(ad+bc)i :


\implies (-1+2y)+(-2y-1)i-2iy=3+i

Simplify:


\implies -1+2y-2iy-i-2iy=3+i


\implies 2y-4iy=4+2i

Factor:


\implies 2(1-2i)y=2(2+i)

Divide both sides by
2(1-2i) :


\implies (2(1-2i)y)/(2(1-2i))=(2(2+i))/(2(1-2i))


\implies y=((2+i))/((1-2i))

Multiply by the complex conjugate
(1+2i)/(1+2i) to remove
(1 - 2i) from the denominator :


\implies y=((2+i)(1+2i))/((1-2i)(1+2i))

Apply complex arithmetic rule
(a+bi)(c+di)=(ac-bd)+(ad+bc)i to numerator:


\implies y=((2-2)+(4+1)i)/((1-2i)(1+2i))


\implies y=(5i)/((1-2i)(1+2i))

Apply complex arithmetic rule
(a+bi)(a-bi)=a^2+b^2 to the denominator :


\implies y=(5i)/(1^2+2^2)


\implies y=(5i)/(5)


\implies y=i

Therefore, one solution is
y=i

For the other solution, substitute
y=i into
x=-1-2iy:


\implies x=-1-2ii


\implies x=-1-2i^2

Apply the imaginary number rule
i^2=-1 :


\implies x=-1-2(-1)


\implies x=-1+2


\implies x=1

Therefore, the second solution is
x = 1

User Reticentroot
by
4.7k points