120k views
25 votes
Please answer the complex system

Please answer the complex system-example-1
User Axon
by
9.0k points

1 Answer

1 vote

Answer:


y = i


x = 1

Explanation:

-------------------------------------------------------

Make
x the subject for
ix-2y=-i :

-------------------------------------------------------

Add 2y to both sides:


\implies ix=-i+2y

Divide both sides by i:


\implies x=(-i+2y)/(i)

To remove i from the denominator, multiply the numerator and denominator by its complex conjugate:


\implies x=(-i+2y)/(i) *(-i)/(-i)


\implies x=(i^2-2iy)/(-i^2)

Apply the imaginary number rule
i^2=-1 :


\implies x=(-1-2iy)/(-(-1))


\implies x=(-1-2iy)/(1)


\implies x=-1-2iy

-----------------------------------------------------------------------------------------------

Substitute
x=-1-2iy into
(1+i)x-2iy=3+i and make y the subject:

-----------------------------------------------------------------------------------------------


\implies (1+i)(-1-2iy)-2iy=3+i

Apply complex arithmetic rule
(a+bi)(c+di)=(ac-bd)+(ad+bc)i :


\implies (-1+2y)+(-2y-1)i-2iy=3+i

Simplify:


\implies -1+2y-2iy-i-2iy=3+i


\implies 2y-4iy=4+2i

Factor:


\implies 2(1-2i)y=2(2+i)

Divide both sides by
2(1-2i) :


\implies (2(1-2i)y)/(2(1-2i))=(2(2+i))/(2(1-2i))


\implies y=((2+i))/((1-2i))

Multiply by the complex conjugate
(1+2i)/(1+2i) to remove
(1 - 2i) from the denominator :


\implies y=((2+i)(1+2i))/((1-2i)(1+2i))

Apply complex arithmetic rule
(a+bi)(c+di)=(ac-bd)+(ad+bc)i to numerator:


\implies y=((2-2)+(4+1)i)/((1-2i)(1+2i))


\implies y=(5i)/((1-2i)(1+2i))

Apply complex arithmetic rule
(a+bi)(a-bi)=a^2+b^2 to the denominator :


\implies y=(5i)/(1^2+2^2)


\implies y=(5i)/(5)


\implies y=i

Therefore, one solution is
y=i

For the other solution, substitute
y=i into
x=-1-2iy:


\implies x=-1-2ii


\implies x=-1-2i^2

Apply the imaginary number rule
i^2=-1 :


\implies x=-1-2(-1)


\implies x=-1+2


\implies x=1

Therefore, the second solution is
x = 1

User Reticentroot
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories