Photo 1
Answer:
![\\c = √(61)](https://img.qammunity.org/2023/formulas/mathematics/middle-school/rzc23eq56bil34a7unar3lmuwo81qhln2d.png)
Explanation:
The pythagorean theorem is
![a^(2) + b^(2) = c^(2)](https://img.qammunity.org/2023/formulas/mathematics/college/dlq99cemewq34ljaffj451elcn4bvnt9cd.png)
So if we plug in the other lengths it will be
![5^(2) + 6^(2) = c^(2)](https://img.qammunity.org/2023/formulas/mathematics/middle-school/er7r7dwf4n10ttp0djiphv72sa9ugtkwtt.png)
Now we have to find the value of
![c](https://img.qammunity.org/2023/formulas/mathematics/college/ptzeljxqigm9cccbqgq6i9swp5ba9k5bgm.png)
![25 + 36 = c^(2)](https://img.qammunity.org/2023/formulas/mathematics/middle-school/mje08rseg0egpouikik8dk5sp85bxsw3dh.png)
![√(61) = \sqrt{c^(2)}](https://img.qammunity.org/2023/formulas/mathematics/middle-school/3l2m7x5h8iwbgbjvw26recqbc9b5tn9rok.png)
![\\c = √(61)](https://img.qammunity.org/2023/formulas/mathematics/middle-school/rzc23eq56bil34a7unar3lmuwo81qhln2d.png)
Photo 2
Answer:
![13](https://img.qammunity.org/2023/formulas/mathematics/high-school/e8s210mwhm45wufr75az10eyrumcckqbpc.png)
Explanation:
Use the distance formula;
![\sqrt{(x_(2) - x_(1))^(2) + {(y_(2) - y_(1))^(2)](https://img.qammunity.org/2023/formulas/mathematics/middle-school/9nsu4ejpyarew4d0jol79doj6kjzj305ct.png)
So if we plug in the other lengths it will be
![\sqrt{(8 - 3)^(2) + (7 - (-5))^(2)](https://img.qammunity.org/2023/formulas/mathematics/middle-school/wghmbsvwbctnbc7hkjyppyhfsx2gzia2p5.png)
Then we simplify and get
![13](https://img.qammunity.org/2023/formulas/mathematics/high-school/e8s210mwhm45wufr75az10eyrumcckqbpc.png)