188k views
2 votes
NO LINKS!! Please help me with these graphs. (NOT Multiple choice)

a. Show the end behavior
b. Shape the graph near the near x-intercepts.

1. p(x)= 2/3(3x - 6)(x + 2) (x - 3)^2

2. p(x) = (x - 3)^2 (x + 2) (2x + 7)^2

3. p(x) = (x - 5)(x + 2) (x - 1) - 30

User Ali Fallah
by
8.8k points

1 Answer

3 votes

Answer:


\begin{aligned}\textsf{1.} \quad \textsf{As}\;\; &x \rightarrow - \infty,\;\;f(x) \rightarrow + \infty\\ \textsf{As}\;\; &x \rightarrow +\infty,\;\;f(x) \rightarrow + \infty \end{aligned}


\begin{aligned}\textsf{2.} \quad \textsf{As}\;\; &x \rightarrow - \infty,\;\;f(x) \rightarrow - \infty\\ \textsf{As}\;\; &x \rightarrow +\infty,\;\;f(x) \rightarrow + \infty \end{aligned}


\begin{aligned}\textsf{3.} \quad \textsf{As}\;\; &x \rightarrow - \infty,\;\;f(x) \rightarrow - \infty\\ \textsf{As}\;\; &x \rightarrow +\infty,\;\;f(x) \rightarrow + \infty \end{aligned}

Explanation:

Root Multiplicity

Odd multiplicity → the graph will cross the x-axis at the root.

Even multiplicity → the graph will touch the x-axis at the root (but will not cross the x-axis).

Question 1

Given function:


p(x)= (2)/(3)(3x - 6)(x + 2)(x - 3)^2

Therefore:

  • Degree: 4 (even)
  • Leading coefficient: positive

End behaviors:


\textsf{As}\;\; x \rightarrow - \infty,\;\;f(x) \rightarrow + \infty


\textsf{As}\;\; x \rightarrow +\infty,\;\;f(x) \rightarrow + \infty

The x-intercepts of a function are when f(x)=0.

Therefore, the x-intercepts are:

  • x = -2 with multiplicity 1
  • x = 2 with multiplicity 1
  • x = 3 with multiplicity 2

Therefore, the graph of the given function has 3 turning points.

  • Begins in quadrant II
  • Crosses the x-axis at x = -2
  • Crosses the x-axis at x = 2
  • Touches the x-axis at x = 3
  • Ends in quadrant I

Question 2

Given function:


p(x)=(x - 3)^2 (x + 2) (2x + 7)^2

Therefore:

  • Degree: 5 (odd)
  • Leading coefficient: positive

End behaviors:


\textsf{As}\;\; x \rightarrow - \infty,\;\;f(x) \rightarrow -\infty


\textsf{As}\;\; x \rightarrow +\infty,\;\;f(x) \rightarrow + \infty

The x-intercepts of a function are when f(x)=0. Therefore, the x-intercepts are:

  • x = -3.5 with multiplicity 2
  • x = -1 with multiplicity 1
  • x = 3 with multiplicity 2

Therefore, the graph of the given function has 4 turning points.

  • Begins in quadrant III
  • Touches the x-axis at x = -3.5
  • Crosses the x-axis at x = -2
  • Touches the x-axis at x = 3
  • Ends in quadrant I

Question 3

Given function:


p(x)=(x - 5)(x + 2)(x - 1)-30

Therefore:

  • Degree: 3 (odd)
  • Leading coefficient: positive

End behaviors:


\textsf{As}\;\; x \rightarrow - \infty,\;\;f(x) \rightarrow -\infty


\textsf{As}\;\; x \rightarrow +\infty,\;\;f(x) \rightarrow + \infty

The graph has 2 turning points.

  • Begins in quadrant III
  • Turning points at x ≈ -0.7 and x ≈ 3.4
  • Crosses the x-axis at x ≈ 5.8
  • Ends in quadrant I
NO LINKS!! Please help me with these graphs. (NOT Multiple choice) a. Show the end-example-1
NO LINKS!! Please help me with these graphs. (NOT Multiple choice) a. Show the end-example-2
NO LINKS!! Please help me with these graphs. (NOT Multiple choice) a. Show the end-example-3
User Gerriet
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories