Answer:
![\sf (3)/(2) = 1 (1)/(2) \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/j4o2gs2h9jgdeytx38labosbjfeqc739rv.png)
Explanation:
![\sf (1x)/(3) + (1)/(4) = (3)/(4) \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/ljsfvzaeuf73yjvtbxxeydbhhzbyvvchvk.png)
To solve easily, multiply the whole equation by it's LCM ( LCM of 3 & 4 is 12 ).
![\sf12 * ( \sf (1x)/(3) + (1)/(4) = (3)/(4) ) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \ \\ \\ \sf (1x)/(3) * 12 + (1)/(4) * 12= (3)/(4) * 12\\ \\ \sf \sf (12x)/(3) + (12)/(4) = (36)/(4) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \sf4x + 3 = 9 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:](https://img.qammunity.org/2023/formulas/mathematics/high-school/b8n1t1pqtmn9d6y4f3guyu9cwkggnaqf32.png)
And now solve for x.
First, subtract 3 from both sides.
![\sf4x = 9 - 3 \\ \sf4x = 6](https://img.qammunity.org/2023/formulas/mathematics/high-school/ox8jbod3on2kpiw3d1vgjb2k16u6rtq8aa.png)
Divide both sides by 4.
![\sf \: x = (6)/(4) \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/d5sf6lazbu194ws4v869t9dp1csol2smju.png)
To write the fraction in its simplest form, divide both the numerator and denominator by 2.
![\sf (3)/(2) = 1 (1)/(2) \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/j4o2gs2h9jgdeytx38labosbjfeqc739rv.png)