Answer:
![x-2 (3)/(4)=13 (1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/dbczucz3v92ohovxmj9tvyr41mql1xh2yk.png)
(where x is the original length of the pipe).
Original length of the pipe = 16 feet
Explanation:
Let x be the original length of the pipe.
Given a plumber cuts 2 3/4 feet from a pipe and now has a pipe that is 13 1/4 feet long, the equation that models this is:
![\boxed{ x-2 (3)/(4)=13 (1)/(4)}](https://img.qammunity.org/2023/formulas/mathematics/college/9xjk8yfz9nkvdu74vp12vh3ili56skdepa.png)
To determine the length of the original pipe, solve the equation for x.
Add 2 3/4 to both sides of the equation:
![\implies x-2 (3)/(4)+2 (3)/(4)=13 (1)/(4)}+2 (3)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/aj3qjikjbpy1hiqiuq7tryvs7c6iatfwed.png)
![\implies x=13 (1)/(4)}+2 (3)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/qrkpbyt31wsf1ilnpmm910zole3okylql0.png)
When adding mixed numbers, partition the mixed numbers into fractions and whole numbers, and add them separately:
![\implies x=13 +(1)/(4)}+2 +(3)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/uumdz1ojwfb0u3pgc5hf6jv7joqvsz9muj.png)
![\implies x=13 +2 +(1)/(4)}+(3)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/pxmpte0xrkixlwnomn3fee7izcd3g55uol.png)
![\implies x=15 +(1+3)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/aixiv0uhtq2keetyz2a41oubyo9599l2fv.png)
![\implies x=15 +(4)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/8f9nlccpv2h8c825esnm02j1szxigr0fo8.png)
![\implies x=15 +1](https://img.qammunity.org/2023/formulas/mathematics/college/k9gsyn6yvbgz4m0kamnyf1i5xw01vxwelz.png)
![\implies x=16](https://img.qammunity.org/2023/formulas/mathematics/college/anw44wnfcpwl5znwyt88zv52xr7004kti3.png)
Therefore, the original length of the pipe was 16 feet.