529,634 views
35 votes
35 votes
Find the volume of the cone where Radius= 3 and height=7 .
Please use π = 22/7


User Pirho
by
2.9k points

2 Answers

22 votes
22 votes

Answer:


\displaystyle \boxed{\tt \: VOLUME \; OF\; THE\; CONE = 66 \;units^3 }

Explanation:

Given:

Radius [r] = 3

Height [h] =7

To Find:

Volume of the cone

Solution:

We need to use the formula of volume of cone to find the volume of cone.

So We know that,


\boxed{\rm \: Volume \: of \: the \: cone = \tt \cfrac{1}{3} \pi{r} {}^(2) h}

Where,

  • π = 22/7[According to the question]
  • r = radius
  • h = height

So put their values in the formulae:

  • r = 3
  • h = 7


\rm \: Volume \: of \: the \: cone = \cfrac{1}{3 } * \cfrac{22}{7} * 3 {}^(2) * 7

Now Simplify to find the value of cone.


\rm \: Volume \: of \: the \: cone = \cfrac{1}{3} * \cfrac{22}{7} * 3 * 3 * 7


\rm \: Volume \: of \: the \: cone = \cfrac{1}{3} * \cfrac{22}{7} * 9 * 7


\rm \: Volume \: of \: the \: cone = \cfrac{1}{3} * \cfrac{22}{7} * 63


\rm \: Volume \: of \: the \: cone = \cfrac{1}{3} * \cfrac{22}{ \cancel{7}{}^1} * \cancel{63}\; \; {}^(9)


\rm \: Volume \: of \: the \: cone = \cfrac{1}{3} * 22 * 9


\rm \: Volume \: of \: the \: cone = \cfrac{1}{3} * 198


\rm \: Volume \: of \: the \: cone = \cfrac{1}{ \cancel{3} {}^(1) } * \cancel{{ 198} } \: ^(66)


\rm \: Volume \: of \: the \: cone = 1 * 66


\boxed{ \rm \: Volume \: of \: the \: cone = \boxed{\rm 66 \: \: units {}^(3)}}

Hence, the volume of the cone would be 66 units^3 .


\rule{225pt}{2pt}

I hope this helps!

User Thomas Keller
by
2.6k points
12 votes
12 votes

Answer:

Given -

♦ Radius of cone = 3 units

♦ Height = 7 units


volume = (1)/(3) \pi \: r {}^(2) h \\ \\ = > \frac{1}{\cancel{3}} * \frac{22}{\cancel{7} } * \cancel{ 3} * 3 * \cancel{7} \\ \\ = > 22 * 3 \\ \\ = > 66 \: units {}^(3)

Go for it :D

User Johnathan Sewell
by
3.2k points