192k views
4 votes
For question 44 is f(2pi/4) a positive or a negative number

Please help ​

For question 44 is f(2pi/4) a positive or a negative number Please help ​-example-1

1 Answer

4 votes

Answer:

Amplitude = 3

Period = π

Explanation:


\boxed{\begin{minipage}{8.7cm}\underline{Standard form of a cosecant function}\\\\$y=A\csc(Bx)$\\\\where:\\\\\phantom{ww}$\bullet$ $|A|$ is the stretch factor. \\ \\\phantom{ww}$\bullet$ $(2\pi)/(|B|)$ is the period.\\\\\phantom{ww}$\bullet$ $x=(\pi)/(|B|)$ is the interval of vertical asymptotes.\\\end{minipage}}

Given function:


f(x)=3 \csc 2x

Therefore:

  • A = 3
  • B = 2

Period


\textsf{Period} = (2 \pi)/(|B|)=(2 \pi)/(|2|)=\pi

Amplitude

The amplitude of the given function is 3, so:

  • minimum points are when y = 3.
  • maximum points are when y = -3.

x-values of minimum points


\begin{aligned}3\csc(2x)=3 \implies \csc(2x)&=1\\(1)/(\sin(2x))&=1\\\sin(2x)&=1\\2x&=(\pi)/(2)+2\pi n\\x&=(\pi)/(4)+\pi n \end{aligned}


\implies \textsf{Minimum points}: \left((\pi)/(4)\pm \pi n,3 \right)

x-values of maximum points


\begin{aligned}3\csc(2x)=-3 \implies \csc(2x)&=-1\\(1)/(\sin(2x))&=-1\\\sin(2x)&=-1\\2x&=-(\pi)/(2)+2\pi n\\x&=-(\pi)/(4)+\pi n \end{aligned}


\implies \textsf{Maximum points}: \left(-(\pi)/(4)\pm \pi n,-3 \right)

Asymptotes:


\implies x=(\pi)/(|B|)=(\pi)/(|2|)=(1)/(2) \pi

Therefore, there are vertical asymptotes every ¹/₂π.

To graph the given function:


  • \textsf{Draw vertical asymptotes at} \;\;x = 0 + (\pi)/(2) n

  • \textsf{Plot minimum points at}\; \left((\pi)/(4)\pm \pi n,3 \right)

  • \textsf{Plot maximum points at}\; \left(-(\pi)/(4)\pm \pi n,-3 \right)
  • Draw curves between the asymptotes with the given min/max points.

For question 44 is f(2pi/4) a positive or a negative number Please help ​-example-1
User Dordi
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories