Answer: 23.1, 13.35718336 years or 14 rounded
Explanation:
![Given:A= 23.1e^(0.0152t)](https://img.qammunity.org/2023/formulas/mathematics/college/xd6h5pyuh7571du817n3it8xew5xss4hfy.png)
when A = end amount, and t = years after 2000
Part A).
What was the population of the state in 2000. According to our function, this would be when t = 0
![23.1e^(0.0152(0))\\\\=23.1(1)\\\\=\boxed{23.1}](https://img.qammunity.org/2023/formulas/mathematics/college/x1oz9z4imdnhee3a8txdgwl4wlyb74h77f.png)
Part B).
When will the population of the state reach 28.3 million?
This would be when A = 28.3
![28.3=23.1e^(0.0152t)\\\\(28.3)/(23.1) =(23.1e^(0.0152t))/(23.1) \\\\(28.3)/(23.1) =e^(0.0152t)\\\\ln^{(28.3)/(23.1) }=ln^{e^(0.0152t)}\\\\ln^{(28.3)/(23.1) }=0.0152t\\\\t=\frac{ln^{(28.3)/(23.1) }}{0.0152} \\\\\boxed{t=13.35718336 \ \ years}](https://img.qammunity.org/2023/formulas/mathematics/college/70wfqn23a76p45pr0wsfd6ntkz0pgzn6ul.png)