Answer:
See attachment.
Explanation:
Given function:
![R=6e^(12.77x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bmpwwxtiprc334zximhacf0aisxxquxsse.png)
Given parameters:
- Domain: [0, 0.3]
- Range: [0, 100]
The y-intercept is when x = 0:
![\begin{aligned}x=0\implies R&=6e^(12.77 \cdot 0)\\R&=6\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pngqobfazk8aidsorlr0m5xn0tr73pbraw.png)
Locate more points on the curve by inputting different values of x from the given domain:
![\begin{aligned}x=0.05\implies R&=6e^(12.77 \cdot 0.05)\\R&=11.4\;\; \sf (1\;d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yc4bznbnr0hgxzdjrmlhqysa7warqcpl7h.png)
![\begin{aligned}x=0.1\implies R&=6e^(12.77 \cdot 0.1)\\R&=21.5\;\; \sf (1\;d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/i07ciwiez52ou7oj96udrs9j2i10agj28h.png)
![\begin{aligned}x=0.15\implies R&=6e^(12.77 \cdot 0.15)\\R&=40.7\;\; \sf (1\;d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fpb7mub7d9qeo9bfnit4g8zm6z9ycz1sp1.png)
![\begin{aligned}x=0.2\implies R&=6e^(12.77 \cdot 0.2)\\R&=77.2\;\; \sf (1\;d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ujl0zj9lfsr1d67s58qrzq9cpdshijkdqg.png)
Find the x-value when R = 100:
![\begin{aligned}\implies 6e^(12.77x)&=100\\e^(12.77x)&=(50)/(3)\\\ln e^(12.77x)&=\ln \left((50)/(3)\right)\\12.77x \ln e&=\ln \left((50)/(3)\right)\\12.77x &=\ln \left((50)/(3)\right)\\x &=(\ln \left((50)/(3)\right))/(12.77)\\x&=0.22\;\; \sf (2 \; d.p.) \end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/53p424drqckn2j0cal3ihnvpvt1k5u1ih0.png)
To draw the graph:
- Use a scale of x : y = 1 : 400.
- Plot the y-intercept at (0, 6).
- Plot points (0.05, 11.4), (0.1, 21.5), (0.15, 40.7), (0.2, 77.2).
- Plot point (0.22, 100).
- Draw a curve through the points.