Answer:
= 2^(3·1/4·1/2) = 2^(3/8)
Explanation:
You want to simplify ...
![\sqrt{\sqrt[4]{8}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yptv28emlwgf5iyhixlyfxfq51fu99lb6b.png)
Exponent rules
The useful rules of exponents are ...
![\sqrt[n]{a}=a^{(1)/(n)}\\\\(a^b)^c=a^(bc)](https://img.qammunity.org/2023/formulas/mathematics/high-school/obwry9i46csh9zkakvu449mttq3ceet3d5.png)
Rewrite
Recognizing 8 = 2³, you can use fractional exponents to represent the roots, then simplify the exponent of the result.
![\sqrt{\sqrt[4]{8}} = ((2^3)^{(1)/(4)})^{(1)/(2)}=2^{3\cdot(1)/(4)\cdot(1)/(2)}=2^{(3)/(4\cdot2)}=\boxed{2^{(3)/(8)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qach8j3lgjdqeecn6r5p69itm6rxmqnf5u.png)
__
Additional comment
In plain text, this is written 2^(3/8). Both the caret and the parentheses are required.