173k views
3 votes
Please help me answer this question

Please help me answer this question-example-1

1 Answer

5 votes

Explanation:

We know rhat


\sin( (x)/(2) ) = \sqrt{ (1 - \cos(x) )/(2) }

whenever x lies from 90 to 180.

If


\csc(x) = 9

Using Reciprocal Identities


\sin(x) = (1)/(9)

Using Pythagorean Identity,


\sin {}^(2) (x) + \cos {}^(2) (x) = 1


( (1)/(9) ) {}^(2) + \cos {}^(2) (x) = 1


\cos {}^(2) (x) = (80)/(81)


\cos(x) = (4 √(5) )/(9)

Cosine is negative in when x lies between 90 and 180 so


\cos(x) = - (4 √(5) )/(9)

So


\sin( (x)/(2) ) = \sqrt{ (1 + (4 √(5) )/(9) )/(2) }


\sin( (x)/(2) ) = \sqrt{ (9 + 4 √(5) )/(18) }

For cosine remember


\cos( (x)/(2) ) = \sqrt{ (1 + \cos(x) )/(2) }

Cosine is negative in second quadrant so


\cos( (x)/(2) ) = - \sqrt{ (1 + \cos(x) )/(2) }


\cos( (x)/(2) ) = - \sqrt{ (1 - (4 √(5) )/(9) )/(2) }


\cos( (x)/(2) ) = - \sqrt{ (9 - 4 √(5) )/(18) }

For tangent,


\tan( (x)/(2) ) = ( \sin( (x)/(2) ) )/( \cos( (x)/(2) ) )


\frac{ \sqrt{ (1 - \cos(x) )/(2) } }{ \sqrt{ (1 + \cos(x) )/(2) } }


= ( √(1 - \cos(x) ) )/( √(1 + \cos(x) ) )

Tangent is negative over 90<x<180 so


- ( √(1 - \cos(x) ) )/( √(1 + \cos(x) ) )


- \sqrt{ (1 + (4 √(5) )/(9) )/(1 - (4 √(5) )/(9) ) }


- \sqrt{ ( (9 + 4 √(5) )/(9) )/( (9 - 4 √(5) )/(9) ) }


- \sqrt{ (9 + 4 √(5) )/(9 - 4 √(5) ) }


- \sqrt{ \frac{1}{(9 - 4 \sqrt{5) {}^(2) } } }


- (1)/(9 - 4 √(5) )

so


\tan( (x)/(2) ) = - (1)/( 9 + 4 √(5) )

or


\tan( (x)/(2) ) = - 9 + 4 √(5)

User Jaecheol Park
by
2.9k points