173k views
3 votes
Please help me answer this question

Please help me answer this question-example-1

1 Answer

5 votes

Explanation:

We know rhat


\sin( (x)/(2) ) = \sqrt{ (1 - \cos(x) )/(2) }

whenever x lies from 90 to 180.

If


\csc(x) = 9

Using Reciprocal Identities


\sin(x) = (1)/(9)

Using Pythagorean Identity,


\sin {}^(2) (x) + \cos {}^(2) (x) = 1


( (1)/(9) ) {}^(2) + \cos {}^(2) (x) = 1


\cos {}^(2) (x) = (80)/(81)


\cos(x) = (4 √(5) )/(9)

Cosine is negative in when x lies between 90 and 180 so


\cos(x) = - (4 √(5) )/(9)

So


\sin( (x)/(2) ) = \sqrt{ (1 + (4 √(5) )/(9) )/(2) }


\sin( (x)/(2) ) = \sqrt{ (9 + 4 √(5) )/(18) }

For cosine remember


\cos( (x)/(2) ) = \sqrt{ (1 + \cos(x) )/(2) }

Cosine is negative in second quadrant so


\cos( (x)/(2) ) = - \sqrt{ (1 + \cos(x) )/(2) }


\cos( (x)/(2) ) = - \sqrt{ (1 - (4 √(5) )/(9) )/(2) }


\cos( (x)/(2) ) = - \sqrt{ (9 - 4 √(5) )/(18) }

For tangent,


\tan( (x)/(2) ) = ( \sin( (x)/(2) ) )/( \cos( (x)/(2) ) )


\frac{ \sqrt{ (1 - \cos(x) )/(2) } }{ \sqrt{ (1 + \cos(x) )/(2) } }


= ( √(1 - \cos(x) ) )/( √(1 + \cos(x) ) )

Tangent is negative over 90<x<180 so


- ( √(1 - \cos(x) ) )/( √(1 + \cos(x) ) )


- \sqrt{ (1 + (4 √(5) )/(9) )/(1 - (4 √(5) )/(9) ) }


- \sqrt{ ( (9 + 4 √(5) )/(9) )/( (9 - 4 √(5) )/(9) ) }


- \sqrt{ (9 + 4 √(5) )/(9 - 4 √(5) ) }


- \sqrt{ \frac{1}{(9 - 4 \sqrt{5) {}^(2) } } }


- (1)/(9 - 4 √(5) )

so


\tan( (x)/(2) ) = - (1)/( 9 + 4 √(5) )

or


\tan( (x)/(2) ) = - 9 + 4 √(5)

User Jaecheol Park
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories