108k views
5 votes
Please complete both question

this is urgent so please try and complete it as fast as possible
due today ​

Please complete both question this is urgent so please try and complete it as fast-example-1
User Gopi Kolla
by
5.1k points

1 Answer

4 votes

Answer:


\textsf{a)} \quad x=(25(7-√(13)))/(3)=28.2870727\; \sf mm


\textsf{b)} \quad V=379037.8082\; \sf mm^3

Step-by-step explanation:


\boxed{\begin{minipage}{5 cm}\underline{Volume of a rectangular prism}\\\\$V=w\:l\:h$\\\\where:\\ \phantom{ww}$\bullet$ $w$ is the width of the base. \\ \phantom{ww}$\bullet$ $l$ is the length of the base. \\ \phantom{ww}$\bullet$ $h$ is the height.\\\end{minipage}}

Given:

  • l = 200 mm
  • w = 150 mm

The dimensions of the rectangular prism in terms of x are:

  • Length = 200 - 2x
  • Width = 150 - 2x
  • Height = x

Substitute these values into the formula for volume to create an equation in terms of x:


\begin{aligned}\implies V&=(150-2x)(200-2x)x\\&=(30000-700x+4x^2)x\\&=4x^3-700x^2+30000x\end{aligned}

To find the value of x that will give the maximum volume, differentiate the equation for volume.


\begin{aligned}\implies \frac{\text{d}V}{\text{d}x}&=3 \cdot 4x^(3-1)-2 \cdot 700x^(2-1)+30000x^(1-1)\\&=12x^2-1400x+30000\end{aligned}

Set the derivative to zero and solve for x using the quadratic formula:


\implies x=(-(-1400) \pm √((-1400)^2-4(12)(30000)))/(2(12))


\implies x=(1400 \pm √(520000))/(24)


\implies x=(1400 \pm √(40000 \cdot 13))/(24)


\implies x=(1400 \pm √(40000)√(13))/(24)


\implies x=(1400 \pm 200√(13))/(24)


\implies x=(175\pm 25√(13))/(3)


\implies x=(25(7\pm√(13)))/(3)

To determine which value of x will give the maximum volume, differentiate again:


\begin{aligned}\implies \frac{\text{d}^2V}{\text{d}x^2}&=2 \cdot12x^(2-1)-1400x^(1-1)+0\\&=24x-1400\end{aligned}

Substitute both values of x into the second derivative:


x=(25(7+√(13)))/(3) \implies \frac{\text{d}^2V}{\text{d}x^2}=721.1102551 > 0\implies \sf minimum


x=(25(7-√(13)))/(3) \implies \frac{\text{d}^2V}{\text{d}x^2}=-721.1102551 < 0\implies \sf maximum

Therefore, the value of x which will give the maximum volume is:


x=(25(7-√(13)))/(3)=28.2870727\; \sf mm

To find the maximum volume of the box, substitute the found value of x into the equation for volume:


\begin{aligned}\implies V_(\sf max)&amp;=4\left((25(7-√(13)))/(3)\right)^3-700 \left((25(7-√(13)))/(3)\right)^2+30000 \left ((25(7-√(13)))/(3)\right)\\\\&amp;=379037.8082\; \sf mm^3\end{aligned}

The dimensions of the box with maximum possible volume will be:

  • Length = 143.4 mm (1 d.p.)
  • Width = 93.4 mm (1 d.p.)
  • Height = 28.3 mm (1 d.p.)

User Omermuhammed
by
4.9k points