Answer:
![\textsf{a)} \quad x=(25(7-√(13)))/(3)=28.2870727\; \sf mm](https://img.qammunity.org/2023/formulas/physics/high-school/j8k7r4rhla276ryjczz486tq9b0fopp52l.png)
![\textsf{b)} \quad V=379037.8082\; \sf mm^3](https://img.qammunity.org/2023/formulas/physics/high-school/ay9xfmi9f2pmtk017y1ln5nknwhggctavt.png)
Step-by-step explanation:
![\boxed{\begin{minipage}{5 cm}\underline{Volume of a rectangular prism}\\\\$V=w\:l\:h$\\\\where:\\ \phantom{ww}$\bullet$ $w$ is the width of the base. \\ \phantom{ww}$\bullet$ $l$ is the length of the base. \\ \phantom{ww}$\bullet$ $h$ is the height.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vv62vgtn3grg19ph3s55m7st7tco6t6u5c.png)
Given:
The dimensions of the rectangular prism in terms of x are:
- Length = 200 - 2x
- Width = 150 - 2x
- Height = x
Substitute these values into the formula for volume to create an equation in terms of x:
![\begin{aligned}\implies V&=(150-2x)(200-2x)x\\&=(30000-700x+4x^2)x\\&=4x^3-700x^2+30000x\end{aligned}](https://img.qammunity.org/2023/formulas/physics/high-school/zcbhdjqw74huobipwpv9gvvinko81d64nf.png)
To find the value of x that will give the maximum volume, differentiate the equation for volume.
![\begin{aligned}\implies \frac{\text{d}V}{\text{d}x}&=3 \cdot 4x^(3-1)-2 \cdot 700x^(2-1)+30000x^(1-1)\\&=12x^2-1400x+30000\end{aligned}](https://img.qammunity.org/2023/formulas/physics/high-school/ejcu6n6kd0yad194dx4hng7qe5vidlgngg.png)
Set the derivative to zero and solve for x using the quadratic formula:
![\implies x=(-(-1400) \pm √((-1400)^2-4(12)(30000)))/(2(12))](https://img.qammunity.org/2023/formulas/physics/high-school/i6eq8zcro89gddmirh8j0vjsalt0u03clp.png)
![\implies x=(1400 \pm √(520000))/(24)](https://img.qammunity.org/2023/formulas/physics/high-school/sxdmz33ysmu42u1skmuc8i7zkmzqxalnkq.png)
![\implies x=(1400 \pm √(40000 \cdot 13))/(24)](https://img.qammunity.org/2023/formulas/physics/high-school/vddk8u5ju52vwaggx816ch3klpojz3jm4w.png)
![\implies x=(1400 \pm √(40000)√(13))/(24)](https://img.qammunity.org/2023/formulas/physics/high-school/573ohg8f1kstglo739fcy0421dm2erikec.png)
![\implies x=(1400 \pm 200√(13))/(24)](https://img.qammunity.org/2023/formulas/physics/high-school/jofze9e2h6vefpyp1a7aium7okm9qfs8di.png)
![\implies x=(175\pm 25√(13))/(3)](https://img.qammunity.org/2023/formulas/physics/high-school/q5izpf52q6mzw0jhwhjb0dtndxk9ge9dj4.png)
![\implies x=(25(7\pm√(13)))/(3)](https://img.qammunity.org/2023/formulas/physics/high-school/b9dza6wuvuj3ejn2hzmi26mixf46ns7i7v.png)
To determine which value of x will give the maximum volume, differentiate again:
![\begin{aligned}\implies \frac{\text{d}^2V}{\text{d}x^2}&=2 \cdot12x^(2-1)-1400x^(1-1)+0\\&=24x-1400\end{aligned}](https://img.qammunity.org/2023/formulas/physics/high-school/v1x7ydwu1vsi4hbhg7qz5jv8wa3v8b6wrw.png)
Substitute both values of x into the second derivative:
![x=(25(7+√(13)))/(3) \implies \frac{\text{d}^2V}{\text{d}x^2}=721.1102551 > 0\implies \sf minimum](https://img.qammunity.org/2023/formulas/physics/high-school/eoafk932uy9mmqi3oycelej6t3kswii6f8.png)
![x=(25(7-√(13)))/(3) \implies \frac{\text{d}^2V}{\text{d}x^2}=-721.1102551 < 0\implies \sf maximum](https://img.qammunity.org/2023/formulas/physics/high-school/zjy2wjltdonsly4uk0fl0s4ddgp8na6a13.png)
Therefore, the value of x which will give the maximum volume is:
![x=(25(7-√(13)))/(3)=28.2870727\; \sf mm](https://img.qammunity.org/2023/formulas/physics/high-school/5v8uykz6awhnidt6v3ro162akkrx3dz7i5.png)
To find the maximum volume of the box, substitute the found value of x into the equation for volume:
![\begin{aligned}\implies V_(\sf max)&=4\left((25(7-√(13)))/(3)\right)^3-700 \left((25(7-√(13)))/(3)\right)^2+30000 \left ((25(7-√(13)))/(3)\right)\\\\&=379037.8082\; \sf mm^3\end{aligned}](https://img.qammunity.org/2023/formulas/physics/high-school/a1p2wt3mz3x9wxisczkb9i3get3ucxfvur.png)
The dimensions of the box with maximum possible volume will be:
- Length = 143.4 mm (1 d.p.)
- Width = 93.4 mm (1 d.p.)
- Height = 28.3 mm (1 d.p.)